ﻻ يوجد ملخص باللغة العربية
Single crystalline FeTe$_{0.61}$Se$_{0.39}$ with a sharp superconducting transition at $T_{textrm{c}} sim$ 14 K is synthesized via slow furnace cooling followed by low-temperature annealing. The effect of annealing on the chemical and superconducting inhomogeneities is carefully characterized. We also report resistivity, magnetization, and magneto-optical images of this crystal. Based on the Bean model, critical current density is estimated to exceed $1 times 10^5$ A/cm$^2$ below 5 K under zero field. Weak fish-tail effect is identified at lower temperatures.
We use neutron scattering, to study magnetic excitations in crystals near the ideal superconducting composition of FeTe$_{0.5}$Se$_{0.5}$. Two types of excitations are found, a resonance at (0.5, 0.5, 0) and incommensurate fluctuations on either side
The iron-based superconductor FeTe$_{1-x}$Se$_{x}$ has attracted considerable attention as a candidate topological superconductor owing to a unique combination of topological surface states and bulk high-temperature superconductivity. The superconduc
We have successfully synthesized a new superconducting phase of FeTe1-xSx with a PbO-type structure. It has the simplest crystal structure in iron-based superconductors. Superconducting transition temperature is about 10 K at x = 0.2. The upper criti
We report superconductivity in single crystals of the new iron-pnictide system BaFe1.9Pt0.1As2 grown by a self-flux solution method and characterized via x-ray, transport, magnetic and thermodynamic measurements. The magnetic ordering associated with
We have fabricated thin films of FeTe$_{1-x}$Se$_x$ using a scotch-tape method. The superconductivities of the thin films are different from each other although these films were fabricated from the same bulk sample. The result clearly presents the in