ترغب بنشر مسار تعليمي؟ اضغط هنا

HST/ACS Morphology of Lyman Alpha Emitters at Redshift 5.7 in the COSMOS Field

633   0   0.0 ( 0 )
 نشر من قبل Takashi Murayama
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present detailed morphological properties of Lyman alpha emitters (LAEs) at z~ 5.7 in the COSMOS field, based on {it Hubble Space Telescope} Advanced Camera for Surveys (ACS) data. The ACS imaging in the F814W filter covered 85 LAEs of the 119 LAEs identified in the full two square degree field, and 47 LAEs of them are detected in the ACS images. Nearly half of them are spatially extended with a size larger than 0.15 arcsec (~0.88 kpc at z=5.7) up to 0.4 arcsec (~2.5 kpc at z=5.7). The others are nearly unresolved compact objects. Two LAEs show double-component structures, indicating interaction or merging of building components to form more massive galaxies. By stacking the ACS images of all the detected sources, we obtain a Sersic parameter of n~0.7 with a half-light radius of 0.13 arcsec (0.76 kpc), suggesting that the majority of ACS detected LAEs have not spheroidal-like but disk-like or irregular light profiles. Comparing ACS F814W magnitudes (I_814) with Subaru/Suprime-Cam magnitudes in the NB816, i, and z bands, we find that the ACS imaging in the F814W band mainly probes UV continuum rather than Lyman alpha line emission. UV continuum sizes tend to be larger for LAEs with larger Lyalpha emission regions as traced by the NB816 imaging. The non-detection of 38 LAEs in the ACS images is likely due to the fact that their surface brightness is even too low both in the UV continuum and Lyalpha emission. Estimating I_814 for the LAEs with ACS non-detection from the z and NB816 magnitudes, we find that 16 of these are probably LAEs with a size larger than 0.15 arcsec in UV continuum. All these results suggest that our LAE sample contains systematically larger LAEs in UV continuum size than those previously studied at z~6.



قيم البحث

اقرأ أيضاً

75 - Esther M. Hu 2003
We report results of a deep wide-field narrowband survey for redshift z~5.7 Ly alpha emitters carried out with SuprimeCam on Subaru 8.3-m telescope. Deep narrowband imaging of the SSA22 field through a 120 A bandpass filter centered at 8150 A was com bined with deep multicolor RIz SuprimeCam broadband imaging, and BVRZ imaging taken with CFHTs CFH12K camera to select high-redshift galaxy candidates. Spectroscopic observations were made using the new wide-field multi-object DEIMOS spectrograph on Keck for 22 of the 26 candidate objects. Eighteen objects were identified as z~5.7 Lyman alpha emitters, and a further nineteenth candidate was identified based on an LRIS spectrum. At the 3.3 A resolution of the DEIMOS spectra the asymmetric profile for Ly alpha emission with its steep blue fall-off can be clearly seen. We use this to describe the distribution of equivalent widths and the continuum color break properties for z~5.7 Ly alpha galaxies compared with foreground objects. The large majority (>75%) of Ly alpha lines have rest frame equivalent widths less than 240 A and can be understood in terms of young star forming galaxies with a Salpeter initial mass function for the stars. With narrowband selection criteria of I-N > 0.7 and N<25.05 (AB mags) we find a surface density of Ly alpha emitters of 0.03 per square arcminute per (deltaz=0.1) to a limiting flux just under 2e-17 erg/cm2/s. The luminosity function of the Ly alpha emitters is similar to that at lower redshifts to the lowest measurable luminosity of 1e43 ergs/s as is the universal star formation rate based on their continuum properties. We note that the objects are highly structured in both spatial and spectral properties on the angular scale of the fields (~60 Mpc), and that multiple fields will have to be averaged to accurately measure their ensemble properties.
We present NICMOS J110 (rest-frame 1200-2100 A) observations of the three z=5.7 Lyman Alpha emitters discovered in the blind multislit spectroscopic survey by Martin et al. (2008). These images confirm the presence of the two sources which were previ ously only seen in spectroscopic observations. The third source, which is undetected in our J110 observations has been detected in narrowband imaging of the Cosmic Origins Survey (COSMOS), so our nondetection implies a rest frame equivalent width >146 Angstroms (3 sigma). The two J110-- detected sources have more modest rest frame equivalent widths of 30-40 Angstroms, but all three are typical of high-redshift LAEs. In addition, the J110- detected sources have UV luminosities that are within a factor of two of L*_{UV}, and sizes that appear compact (r_{hl} ~ 0.15) in our NIC2 images -- consistent with a redshift of 5.7. We use these UV-continuum and Lyman Alpha measurements to estimate the i-z colors of these galaxies, and show that at least one, and possibly all three would be missed by the i-dropout LBG selection. These observations help demonstrate the utility of multislit narrowband spectroscopy as a technique for finding faint emission line galaxies.
We investigate morphological properties of 61 Lyman-alpha emitters (LAEs) at z = 4.86 identified in the COSMOS field, based on Hubble Space Telescope Advanced Camera for Surveys (ACS) imaging data in the F814W-band. Out of the 61 LAEs, we find the AC S counterparts for the 54 LAEs. Eight LAEs show double-component structures with a mean projected separation of 0.63 (~ 4.0 kpc at z = 4.86). Considering the faintness of these ACS sources, we carefully evaluate their morphological properties, that is, size and ellipticity. While some of them are compact and indistinguishable from the PSF half-light radius of 0.07 (~ 0.45 kpc), the others are clearly larger than the PSF size and spatially extended up to 0.3 (~ 1.9 kpc). We find that the ACS sources show a positive correlation between ellipticity and size and that the ACS sources with large size and round shape are absent. Our Monte Carlo simulation suggests that the correlation can be explained by (1) the deformation effects via PSF broadening and shot noise or (2) the source blending in which two or more sources with small separation are blended in our ACS image and detected as a single elongated source. Therefore, the 46 single-component LAEs could contain the sources which consist of double (or multiple) components with small spatial separation (i.e., < 0.3 or 1.9 kpc). Further observation with high angular resolution at longer wavelengths (e.g., rest-frame wavelengths of > 4000 A) is inevitable to decipher which interpretation is adequate for our LAE sample.
134 - Vithal Tilvi 2010
Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging sear ch for z=7.7 Lya emitting galaxies using an ultra-narrowband filter (filter width= 9A) on the NEWFIRM imager at the Kitt Peak National Observatory. We found four candidate Lya emitters in a survey volume of 1.4 x 10^4 Mpc^3, with a line flux brighter than 6x10^-18 erg/cm^2/s (5 sigma in 2 aperture). We also performed a detailed Monte-Carlo simulation incorporating the instrumental effects to estimate the expected number of Lya emitters in our survey, and found that we should expect to detect one Lya emitter, assuming a non-evolving Lya luminosity function (LF) between z=6.5 and z=7.7. Even if one of the present candidates is spectroscopically confirmed as a z~8 Lya emitter, it would indicate that there is no significant evolution of the Lya LF from z=3.1 to z~8. While firm conclusions would need both spectroscopic confirmations and larger surveys to boost the number counts of galaxies, we successfully demonstrate the feasibility of sensitive near-infrared (1.06 um) narrow-band searches using custom filters designed to avoid the OH emission lines that make up most of the sky background.
We study six luminous Lyman-alpha emitters (LAEs) with very blue rest-frame UV continua at $5.7le z le 6.6$. These LAEs have previous HST and Spitzer IRAC observations. Combining our newly acquired HST images, we find that their UV-continuum slopes $ beta$ are in a range of $-3.4le beta le -2.6$. Unlike previous, tentative detections of $beta simeq -3$ in photometrically selected, low-luminosity galaxies, our LAEs are spectroscopically confirmed and luminous ($M_{rm UV}<-20$ mag). We model their broadband spectral energy distributions (SEDs), and find that two $betasimeq-2.6pm0.2$ galaxies can be well fitted with young and dust-free stellar populations. However, it becomes increasingly difficult to fit bluer galaxies. We explore further interpretations by including non-zero LyC escape fraction $f_{rm esc}$, very low metallicities, and/or AGN contributions. Assuming $f_{rm esc}simeq0.2$, we achieve the bluest slopes $betasimeq-2.7$ when nebular emission is considered. This can nearly explain the SEDs of two galaxies with $betasimeq-2.8$ and --2.9 ($sigma_{beta}=0.15$). Larger $f_{rm esc}$ values and very low metallicities are not favored by the strong nebular line emission (evidenced by the IRAC flux) or the observed (IRAC 1 - IRAC 2) color. Finally, we find that the $betasimeq-2.9$ galaxy can potentially be well explained by the combination of a very young population with a high $f_{rm esc}$ ($ge0.5$) and an old, dusty population. We are not able to produce two $beta simeq -3.4 pm0.4$ galaxies. Future deep spectroscopic observations are needed to fully understand these galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا