ﻻ يوجد ملخص باللغة العربية
An on-shell renormalisation programme for the chargino/neutralino and the sfermion sectors within the Minimal Supersymmetric Standard Model as implemented in a fully automated code, SloopS, for the calculation of one-loop processes at the colliders and in astrophysics, is presented. This is a sequel to our study in arXiv:0807.4668 [hep-ph] where an on-shell renormalisation of the Higgs (and the gauge/fermion) sector is performed. The issue of mixing is treated in a unified and coherent manner in all these sectors, in particular we give some new insight into the renormalisation of the mixing angle in the sfermion sector and like with the Higgs sector and the issue of tan(beta) we discuss different schemes. We also perform numerical comparisons between our code SloopS and different results found in the literature. In particular we consider loop corrections to the neutralino and sfermion masses, chargino pair production and stau pair production in e^{+}e^{-} colliders, as well as a few decays of the heavier chargino. For all these observables, we analyse the tan(beta) scheme dependence using different definitions of this parameter and comment on the impact of using different renormalisation of the mixing parameter in the sfermion sector.
The present status of the calculation of radiative corrections to chargino and neutralino pair production processes in the MSSM is summarized. The main focus will be on the use of the on-shell renormalization scheme for charginos and neutralinos in c
We give an extensive description of the renormalisation of the Higgs sector of the minimal supersymmetric model in SloopS. SloopS is an automatised code for the computation of one-loop processes in the MSSM. In this paper, the first in a series, we s
We have completed the one-loop renormalisation of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) allowing for and comparing between different renormalisation schemes. A special attention is paid to on-shell schemes. We study a variety of t
Supersymmetric models provide many new complex phases which lead to CP violating effects in collider experiments. As an example, CP-sensitive triple product asymmetries in neutralino production and subsequent leptonic two-body decays are studied with
We test the impact of the ATLAS and CMS multi-lepton searches performed at the LHC with 8 as well as 13 TeV center-of-mass energy (using only the pre-2018 results) on the chargino and neutralino sector of the NMSSM. Our purpose consists in analyzing