ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum mechanics in phase space: First order comparison between the Wigner and the Fermi function

169   0   0.0 ( 0 )
 نشر من قبل Giuliano Benenti
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi g_F(x,p) function provides a phase space description of quantum mechanics conceptually different from that based on the the Wigner function W(x,p). In this paper, we show that for a peaked wave packet the g_F(x,p)=0 curve approximately corresponds to a phase space contour level of the Wigner function and provides a satisfactory description of the wave packets size and shape. Our results show that the Fermi function is an interesting tool to investigate quantum fluctuations in the semiclassical regime.



قيم البحث

اقرأ أيضاً

The Wigner function of a dynamical infinite dimensional lattice is studied. A closed differential equation without diffusion terms for this function is obtained and solved. We map atom-photon interaction systems, such as the Jaynes-Cummings model, in to this lattice model, where each dressed or polariton state corresponds to a point in the lattice and the conjugate momenta are described by the eigenvalues of the phase operator. The corresponding Wigner function is defined by these two conjugate variables in what we name the polariton phase space. We derive a general propagator of the Wigner function, which is also valid for other hybrid models.
We provide an introduction into the formulation of non-relativistic quantum mechanics using the Wigner phase-space distribution function and apply this concept to two physical situations at the interface of quantum theory and general relativity: (i) the motion of an ensemble of cold atoms relevant to tests of the weak equivalence principle, and (ii) the Kasevich-Chu interferometer. In order to lay the foundations for this analysis we first present a representation-free description of the Kasevich-Chu interferometer based on unitary operators.
We develop the Wigner phase space representation of a kicked particle for an arbitrary but periodic kicking potential. We use this formalism to illustrate quantum resonances and anti--resonances.
Contextuality and negativity of the Wigner function are two notions of non-classicality for quantum systems. Howard, Wallman, Veitch and Emerson proved recently that these two notions coincide for qudits in odd prime dimension. This equivalence is pa rticularly important since it promotes contextuality as a ressource that magic states must possess in order to allow for a quantum speed-up. We propose a simple proof of the equivalence between contextuality and negativity of the Wigner function based on character theory. This simplified approach allows us to generalize this equivalence to multiple qudits and to any qudit system of odd local dimension.
326 - P. Aniello , V.I. Manko , G. Marmo 2008
Using the notions of frame transform and of square integrable projective representation of a locally compact group $G$, we introduce a class of isometries (tight frame transforms) from the space of Hilbert-Schmidt operators in the carrier Hilbert spa ce of the representation into the space of square integrable functions on the direct product group $Gtimes G$. These transforms have remarkable properties. In particular, their ranges are reproducing kernel Hilbert spaces endowed with a suitable star product which mimics, at the level of functions, the original product of operators. A phase space formulation of quantum mechanics relying on the frame transforms introduced in the present paper, and the link of these maps with both the Wigner transform and the wavelet transform are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا