ترغب بنشر مسار تعليمي؟ اضغط هنا

The photometric evolution of dissolving star clusters: II. Realistic models. Colours and M/L ratios

200   0   0.0 ( 0 )
 نشر من قبل Peter Anders
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Anders




اسأل ChatGPT حول البحث

Evolutionary synthesis models are the prime method to construct models of stellar populations, and to derive physical parameters from observations. One of the assumptions for such models so far has been the time-independence of the stellar mass function. However, dynamical simulations of star clusters in tidal fields have shown the mass function to change due to the preferential removal of low-mass stars from clusters. Here we combine the results from dynamical simulations of star clusters in tidal fields with our evolutionary synthesis code GALEV to extend the models by a new dimension: the total cluster disruption time. We reanalyse the mass function evolution found in N-body simulations of star clusters in tidal fields, parametrise it as a function of age and total cluster disruption time and use this parametrisation to compute GALEV models as a function of age, metallicity and the total cluster disruption time. We study the impact of cluster dissolution on the colour (generally, they become redder) and magnitude (they become fainter) evolution of star clusters, their mass-to-light ratios (off by a factor of ~2 -- 4 from standard predictions), and quantify the effect on the cluster age determination from integrated photometry (in most cases, clusters appear to be older than they are, between 20 and 200%). By comparing our model results with observed M/L ratios for old compact objects in the mass range 10^4.5 -- 10^8 Msun, we find a strong discrepancy for objects more massive than 10^7 Msun (higher M/L). This could be either caused by differences in the underlying stellar mass function or be an indication for the presence of dark matter in these objects. Less massive objects are well represented by the models. The models for a range of total cluster disruption times are available online. (shortened)



قيم البحث

اقرأ أيضاً

We calculated the broad-band photometric evolution of unresolved star clusters, including the preferential loss of low-mass stars due to mass segregation. The stellar mass function of a cluster evolves due to three effects: (a) the evolution of massi ve stars; (b) early tidal effects reduce the mass function independently of the stellar mass; (c) after mass segregation has completed, tidal effects preferentially remove the lowest-mass stars from the cluster. Results: (1) During the first ~40% of the lifetime of a cluster the cluster simply gets fainter due to the loss of stars by tidal effects. (2) Between ~40 and ~80% of its lifetime the cluster gets bluer due to the loss of low-mass stars. This will result in an underestimate of the age of clusters if standard cluster evolution models are used (0.15 -- 0.5 dex). (3) After ~80% of the total lifetime of a cluster it will rapidly get redder. This is because stars at the low-mass end of the main sequence, which are preferentially lost, are bluer than the AGB stars that dominate the light at long wavelengths, resulting in an age overestimate. (4) Clusters with mass segregation and the preferential loss of low-mass stars evolve along almost the same tracks in colour-colour diagrams as clusters without mass segregation. Therefore it will be difficult to distinguish this effect from that due to the cluster age for unresolved clusters, unless the total lifetime of the clusters can be estimated. (5) The changes in the colour evolution of unresolved clusters due to the preferential loss of low-mass stars will affect the determination of the SFHs. (6) The preferential loss of low-mass stars might explain the presence of old (~13 Gyr) clusters in NGC 4365 which are photometrically disguised as intermediate-age clusters (2 - 5 Gyr). [Abridged]
We show that the discrepancy between the Tully-Fisher relation and the luminosity function predicted by most phenomenological galaxy formation models is mainly due to overmerging of galaxy haloes. We have circumvented this overmerging problem, which is inherent in both the Press-Schechter formalism and dissipationless N-body simulations, by including a specific galaxy halo formation recipe into an otherwise standard N-body code. This numerical technique provides the merger trees which, together with simplified gas dynamics and star formation physics, constitute our implementation of a phenomenological galaxy formation model. Resolving the overmerging problem provides us with the means to match both the I-band Tully-Fisher relation and the B and K band luminosity functions within an EdS sCDM structure formation scenario. It also allows us to include models for chemical evolution and starbursts, which improves the match to observational data and renders the modelling more realistic. We show that the inclusion of chemical evolution into the modelling requires a significant fraction of stars to be formed in short bursts triggered by merging events.
Until now it has been impossible to observationally measure how star cluster scale height evolves beyond 1Gyr as only small samples have been available. Here we establish a novel method to determine the scale height of a cluster sample using modelled distributions and Kolmogorov-Smirnov tests. This allows us to determine the scale height with a 25% accuracy for samples of 38 clusters or more. We apply our method to investigate the temporal evolution of cluster scale height, using homogeneously selected sub-samples of Kharchenko et al. (MWSC), Dias et al. (DAML02), WEBDA, and Froebrich et al. (FSR). We identify a linear relationship between scale height and log(age/yr) of clusters, considerably different from field stars. The scale height increases from about 40pc at 1Myr to 75pc at 1Gyr, most likely due to internal evolution and external scattering events. After 1Gyr, there is a marked change of the behaviour, with the scale height linearly increasing with log(age/yr) to about 550pc at 3.5Gyr. The most likely interpretation is that the surviving clusters are only observable because they have been scattered away from the mid-plane in their past. A detailed understanding of this observational evidence can only be achieved with numerical simulations of the evolution of cluster samples in the Galactic Disk. Furthermore, we find a weak trend of an age-independent increase in scale height with galactocentric distance. There are no significant temporal or spatial variations of the cluster distribution zero point. We determine the Suns vertical displacement from the Galactic Plane as $Z_odot=18.5pm1.2$pc.
Using data from the WISE mission, we have measured near infra-red (NIR) photometry of a diverse sample of dust-free stellar systems (globular clusters, dwarf and giant early-type galaxies) which have metallicities that span the range -2.2 < [Fe/H] (d ex) < 0.3. This dramatically increases the sample size and broadens the metallicity regime over which the 3.4 (W1) and 4.6 micron (W2) photometry of stellar populations have been examined. We find that the W1 - W2 colors of intermediate and old (> 2 Gyr) stellar populations are insensitive to the age of the stellar population, but that the W1 - W2 colors become bluer with increasing metallicity, a trend not well reproduced by most stellar population synthesis (SPS) models. In common with previous studies, we attribute this behavior to the increasing strength of the CO absorption feature located in the 4.6 micron bandpass with metallicity. Having used our sample to validate the efficacy of some of the SPS models, we use these models to derive stellar mass-to-light ratios in the W1 and W2 bands. Utilizing observational data from the SAURON and ATLAS3D surveys, we demonstrate that these bands provide extremely simple, yet robust stellar mass tracers for dust free older stellar populations that are freed from many of the uncertainties common among optical estimators.
High spectral resolution evolutionary synthesis models have become a routinely used ingredient in extragalactic work, and as such deserve thorough testing. Star clusters are ideal laboratories for such tests. This paper applies the spectral fitting m ethodology outlined in Paper I to a sample of clusters, mainly from the Magellanic Clouds and spanning a wide range in age and metallicity, fitting their integrated light spectra with a suite of modern evolutionary synthesis models for single stellar population. The combinations of model plus spectral library employed in this investigation are Galaxev/STELIB, Vazdekis/MILES, SED@/GRANADA, and Galaxev/MILES+GRANADA, which provide a representative sample of models currently available for spectral fitting work. A series of empirical tests are performed with these models, comparing the quality of the spectral fits and the values of age, metallicity and extinction obtained with each of them. A comparison is also made between the properties derived from these spectral fits and literature data on these nearby, well studied clusters. These comparisons are done with the general goal of providing useful feedback for model makers, as well as guidance to the users of such models. We find that new generation of models using the GRANADA and MILES libraries are superior to STELIB-based models both in terms of spectral fit quality and regarding the accuracy with which age and metallicity are retrieved. Accuracies of about 0.1 dex in age and 0.3 dex in metallicity can be achieved as long as the models are not extrapolated beyond their expected range of validity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا