ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation and confinement induced itinerant ferromagnetism in chain structures

121   0   0.0 ( 0 )
 نشر من قبل Zsolt Gulacsi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a positive semidefinite operator technique one deduces exact ground states for a zig-zag hexagon chain described by a non-integrable Hubbard model with on-site repulsion. Flat bands are not present in the bare band structure, and the operators $hat B^{dagger}_{mu,sigma}$ introducing the electrons into the ground state, are all extended operators and confined in the quasi 1D chain structure of the system. Consequently, increasing the number of carriers, the $hat B^{dagger}_{mu,sigma}$ operators become connected i.e. touch each other on several lattice sites. Hence the spin projection of the carriers becomes correlated in order to minimize the ground state energy by reducing as much as possible the double occupancy leading to a ferromagnetic ground state. This result demonstrates in exact terms in a many-body frame that the conjecture made at two-particle level by G. Brocks et al. [Phys.Rev.Lett.93,146405,(2004)] that the Coulomb interaction is expected to stabilize correlated magnetic ground states in acenes is clearly viable, and opens new directions in the search for routes in obtaining organic ferromagnetism. Due to the itinerant nature of the obtained ferromagnetic ground state, the systems under discussion may have also direct application possibilities in spintronics.



قيم البحث

اقرأ أيضاً

Weak itinerant ferromagnetism in YCo9Si4 below about 25 K is studied by means of magnetisation, specific heat, and resistivity measurements. Single crystal X-ray Rietveld refinements at room temperature reveal a fully ordered distribution of Y, Co an d Si atoms within the tetragonal space group I4/mcm isostructural with LaCo9Si4. The latter exhibits itinerant electron metamagnetism with an induced moment of about 1 mu_B/f.u. above 6 T, whereas YCo9Si4 exhibits a spontaneous magnetisation M0~12 Am^2/kg at 2 K which corresponds to an ordered moment of about 1.6 mu_B/f.u. indicating weak itinerant ferromagnetism.
We have performed an extensive pressure-dependent structural, spectroscopic, and electrical transport study of LaCrSb$_3$. The ferromagnetic phase (T$_C$ = 120 K at p = 0 GPa) is fully suppressed by p = 26.5 GPa and the Cr-moment decreases steadily w ith increasing pressure. The unit cell volume decreases smoothly up to p = 55 GPa. We find that the bulk modulus and suppression of the magnetism are in good agreement with theoretical predictions, but the Cr-moment decreases smoothly with pressure, in contrast to steplike drops predicted by theory. The ferromagnetic ordering temperature appears to be driven by the Cr-moment.
We propose an experiment to explore the magnetic phase transitions in interacting fermionic Hubbard systems, and describe how to obtain the ferromagnetic phase diagram of itinerant electron systems from these observations. In addition signatures of f erromagnetic correlations in the observed ground states are found: for large trap radii (trap radius $R_T > 4$, in units of coherence length $xi$), ground states are topological in nature -- a skyrmion in 2D, and a hedgehog in 3D.
The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by electrical transport, AC and DC magnetization, heat capacity, x-ray diffraction, resonant ultrasound spectroscopy, and first principles electronic structure calculations. Complex it inerant ferromagnetism in this material is indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC susceptibility, and a weak heat capacity anomaly near the Curie temperature (88 K). The inclusion of spin wave excitations was found to be important in modeling the low temperature heat capacity. The temperature dependence of the elastic moduli and lattice constants, including negative thermal expansion along the c axis at low temperatures, indicate strong magneto-elastic coupling in this system. Calculations show strong evidence for itinerant ferromagnetism and suggest a noncollinear ground state may be expected.
157 - K. Sato , T. Naka , M. Taguchi 2010
We report measurements of the magnetic, transport and thermal properties of the Heusler type compound Fe2VAl0.95. We show that while stoichiometric Fe2VAl is a non-magnetic semi-metal a 5% substitution on the Al-site with the 3d elements Fe and V ato ms leads to a ferromagnetic ground state with a Curie temperature TC = 33+-3 K and a small ordered moment ms = 0.12 mB/Fe in Fe2VAl0.95. The reduced value of the ratio ms/mp = 0.08, where mp = 1.4 mB/Fe is the effective Curie-Weiss moment, together with the analysis of the magnetization data M(H,T), show magnetism is of itinerant nature. The specific heat shows an unusual temperature variation at low temperatures with an enhanced Sommerfeld coefficient, g = 12 mJK-2mol-1. The resistivity, r(T), is metallic and follows a power law behavior r(T) = r0+AT^n with n = 1.5 below TC. With applying pressure, TC decreases with the rate of (1/TC)(dTC /dP) = -0.061 GPa-1. We conclude substitution on the Al-site with Fe and V atoms results in itinerant ferromagnetism with a low carrier density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا