ترغب بنشر مسار تعليمي؟ اضغط هنا

Position-sensitive ion detection in precision Penning trap mass spectrometry

150   0   0.0 ( 0 )
 نشر من قبل Georg Eitel
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A commercial, position-sensitive ion detector was used for the first time for the time-of-flight ion-cyclotron resonance detection technique in Penning trap mass spectrometry. In this work, the characteristics of the detector and its implementation in a Penning trap mass spectrometer will be presented. In addition, simulations and experimental studies concerning the observation of ions ejected from a Penning trap are described. This will allow for a precise monitoring of the state of ion motion in the trap.

قيم البحث

اقرأ أيضاً

Background: The understanding and description of forbidden decays provides interesting challenges for nuclear theory. These calculations could help to test underlying nuclear models and interpret experimental data. Purpose: Compare a direct measureme nt of the $^{138}$La $beta$-decay $Q$ value with the $beta$-decay spectrum end-point energy measured by Quarati et al. using LaBr$_3$ detectors [Appl. Radiat. Isot. 108, 30 (2016)]. Use new precise measurements of the $^{138}$La $beta$-decay and electron capture (EC) $Q$ values to improve theoretical calculations of the $beta$-decay spectrum and EC probabilities. Method: High-precision Penning trap mass spectrometry was used to measure cyclotron frequency ratios of $^{138}$La, $^{138}$Ce and $^{138}$Ba ions from which $beta$-decay and EC $Q$ values for $^{138}$La were obtained. Results: The $^{138}$La $beta$-decay and EC $Q$ values were measured to be $Q$ = 1052.42(41) keV and $Q_{EC}$ = 1748.41(34) keV, improving the precision compared to the values obtained in the most recent atomic mass evaluation [Wang, et al., Chin. Phys. C 41, 030003 (2017)] by an order of magnitude. These results are used for improved calculations of the $^{138}$La $beta$-decay shape factor and EC probabilities. New determinations for the $^{138}$Ce 2EC $Q$ value and the atomic masses of $^{138}$La, $^{138}$Ce, and $^{138}$Ba are also reported. Conclusion: The $^{138}$La $beta$-decay $Q$ value measured by Quarati et al. is in excellent agreement with our new result, which is an order of magnitude more precise. Uncertainties in the shape factor calculations for $^{138}$La beta-decay using our new $Q$ value are reduced by an order of magnitude. Uncertainties in the EC probability ratios are also reduced and show improved agreement with experimental data.
Isobaric quintets provide the best test of the isobaric multiplet mass equation (IMME) and can uniquely identify higher order corrections suggestive of isospin symmetry breaking effects in the nuclear Hamiltonian. The Generalized IMME (GIMME) is a no vel microscopic interaction theory that predicts an extension to the quadratic form of the IMME. Only the $A=20, 32$ $T=2$ quintets have the exotic $T_z = -2$ member ground state mass determined to high-precision by Penning trap mass spectrometry. In this work, we establish $A=36$ as the third high-precision $T=2$ isobaric quintet with the $T_z = -2$ member ground state mass measured by Penning trap mass spectrometry and provide the first test of the predictive power of the GIMME. A radioactive beam of neutron-deficient $^{36}$Ca was produced by projectile fragmentation at the National Superconducting Cyclotron Laboratory. The beam was thermalized and the mass of $^{36}$Ca$^+$ and $^{36}$Ca$^{2+}$ measured by the Time of Flight - Ion Cyclotron Resonance method in the LEBIT 9.4 T Penning trap. We measure the mass excess of $^{36}$Ca to be ME$ = -6483.6(56)$ keV, an improvement in precision by a factor of 6 over the literature value. The new datum is considered together with evaluated nuclear data on the $A=36$, $T=2$ quintet. We find agreement with the quadratic form of the IMME given by isospin symmetry, but only coarse qualitative agreement with predictions of the GIMME. A total of three isobaric quintets have their most exotic members measured by Penning trap mass spectrometry. The GIMME predictions in the $T = 2$ quintet appear to break down for $A = 32$ and greater.
Background: Ultra-low $Q$-value $beta$-decays are interesting processes to study with potential applications to nuclear $beta$-decay theory and neutrino physics. While a number of potential ultra-low $Q$-value $beta$-decay candidates exist, improved mass measurements are necessary to determine which are energetically allowed. Method: Penning trap mass spectrometry was used to determine the atomic mass of $^{89}$Y and $^{139}$La, from which $beta$-decay $Q$-values for $^{89}$Sr and $^{139}$Ba were obtained to determine if there could be an ultra-low $Q$-value decay branch in the $beta$-decay of $^{89}$Sr $rightarrow$ $^{89}$Y or $^{139}$Ba $rightarrow$ $^{139}$La. Results: The $^{89}$Sr $rightarrow$ $^{89}$Y and $^{139}$Ba $rightarrow$ $^{139}$La $beta$-decay $Q$-values were measured to be $Q_{rm{Sr}}$ = 1502.20(0.35) keV and $Q_{rm{Ba}}$ = 2308.37(68) keV. These were compared to energies of excited states in $^{89}$Y at 1507.4(1) keV, and in $^{139}$La at 2310(19) keV and 2313(1) keV to determine $Q$-values of -5.20(37) keV for the potential ultra-low $beta$-decay branch of $^{89}$Sr and -1.6(19.0) keV and -4.6(1.2) keV for those of $^{139}$Ba. Conclusion: The potential ultra-low $Q$-value decay branch of $^{89}$Sr to the $^{89}$Y (3/2$^-$, 1507.4 keV) state is energetically forbidden and has been ruled out. The potential ultra-low $Q$-value decay branch of $^{139}$Ba to the 2313 keV state in $^{139}$La with unknown J$^{pi}$ has also been ruled out at the 4$sigma$ level, while more precise energy level data is needed for the $^{139}$La (1/2$^+$, 2310 keV) state to determine if an ultra-low $Q$-value $beta$-decay branch to this state is energetically allowed.
The masses of 40 neutron-rich nuclides from Z = 51 to 64 were measured at an average precision of $delta m/m= 10^{-7}$ using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. The measurements, of fission fragments from a $^{ 252}$Cf spontaneous fission source in a helium gas catcher, approach the predicted path of the astrophysical $r$ process. Where overlap exists, this data set is largely consistent with previous measurements from Penning traps, storage rings, and reaction energetics, but large systematic deviations are apparent in $beta$-endpoint measurements. Differences in mass excess from the 2003 Atomic Mass Evaluation of up to 400 keV are seen, as well as systematic disagreement with various mass models.
70 - K. Blaum , Sz. Nagy , G. Werth 2009
The technique of Penning trap mass spectrometry is briefly reviewed particularly in view of precision experiments on unstable nuclei, performed at different facilities worldwide. Selected examples of recent results emphasize the importance of high-pr ecision mass measurements in various fields of physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا