ترغب بنشر مسار تعليمي؟ اضغط هنا

On the electromagnetic form factors of hadrons in the time-like region near threshold

77   0   0.0 ( 0 )
 نشر من قبل Alexei Voronin
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Hadron electromagnetic form factor in the time-like region at the boundary of the physical region is considered. The energy behavior of the form factor is shown to be determined by the strong hadron-antihadron interaction. Imaginary parts of the scattering lengths for $pbar{p}$, $Lambdabar{Lambda}$, $Lambdabar{Sigma}^0 (bar{Lambda}{Sigma}^0)$ and ${Sigma}^0bar{Sigma}^0$ are estimated. Developed approach enables us to estimate imaginary part of the scattering volume from $D^*bar{D^*}$ experimental data. The form factor energy behavior away from the threshold is obtained within a semiphenomenological model of hadron-antihadron interaction.

قيم البحث

اقرأ أيضاً

Electromagnetic form factors of hyperons ($Lambda$, $Sigma$, $Xi$) in the timelike region, accessible in the reaction $e^+e^- to bar YY$, are studied. The focus is on energies close to the reaction thresholds, where the properties of these form facto rs are significantly influenced by the interaction in the final $bar YY$ system. This interaction is taken into account in the calculation, utilizing $bar YY$ potential models that have been constructed by the Julich group for the analysis of data from the reaction $bar pp to bar YY$ in the past. The enhancement of the effective form factor for energies close to the threshold, seen in experiments of $e^+e^- to bar Lambda Lambda$ and $e^+e^- to bar Sigma^0Lambda$, is reproduced. With regard to the reactions $e^+e^- to bar Sigma^- Sigma^+, barSigma^0Sigma^0, barSigma^+Sigma^-$ a delicate interplay between the three channels is observed in the results at low energies, caused by the $barSigmaSigma$ interaction. Predictions for the electromagnetic form factors $G_M$ and $G_E$ in the timelike region are presented for the $Lambda$, $Sigma$, and $Xi$ hyperons.
The possibility to compute nucleon electromagnetic form factors in the time-like region by analytic continuation of their space-like expressions has been explored in the framework of the Skyrme model. We have developed a procedure to solve analytical ly Fourier transforms of the nucleon electromagnetic current and hence to obtain form factors defined in all kinematical regions and fulfilling the first-principles requirements. The results are discussed and compared to data, both in space-like and time-like region.
We present results from a calculation of the electromagnetic transition form factors between ground-state octet and decuplet baryons as well as the octet-only $Sigma^0$ to $Lambda$ transition. We work in the combined framework of Dyson-Schwinger equa tions and covariant Bethe-Salpeter equations with all elements, the baryon three body wave function, the quark propagators and the dressed quark-photon vertex determined from a well-established, momentum dependent approximation for the quark-gluon interaction. We discuss in particular the similarities among the different transitions as well as the differences induced by SU(3)-isospin symmetry breaking. We furthermore provide estimates for the slopes of the electric and magnetic $Sigma^0$ to $Lambda$ transitions at the zero photon momentum point.
The electromagnetic process $e^{+}e^{-}to pbar{p}$ is studied with the initial-state-radiation technique using 7.5 fb$^{-1}$ of data collected by the BESIII experiment at seven energy points from 3.773 to 4.600 GeV. The Born cross section and the eff ective form factor of the proton are measured from the production threshold to 3.0 GeV/$c^{2}$ using the $pbar{p}$ invariant-mass spectrum. The ratio of electric and magnetic form factors of the proton is determined from the analysis of the proton-helicity angular distribution.
A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincare covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves a single parameter; i.e., a diquark charge radius. It is argued to be commensurate with the pions charge radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular feature of the study is a separation of form factor contributions into those from different diagram types and correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of results that one could highlight are: r_1^{n,u}>r_1^{n,d}, owing to the presence of axial-vector quark-quark correlations; and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا