ﻻ يوجد ملخص باللغة العربية
We consider the deterministic evolution of a time-discretized spiking network of neurons with connection weights having delays, modeled as a discretized neural network of the generalized integrate and fire (gIF) type. The purpose is to study a class of algorithmic methods allowing to calculate the proper parameters to reproduce exactly a given spike train generated by an hidden (unknown) neural network. This standard problem is known as NP-hard when delays are to be calculated. We propose here a reformulation, now expressed as a Linear-Programming (LP) problem, thus allowing to provide an efficient resolution. This allows us to back-engineer a neural network, i.e. to find out, given a set of initial conditions, which parameters (i.e., connection weights in this case), allow to simulate the network spike dynamics. More precisely we make explicit the fact that the back-engineering of a spike train, is a Linear (L) problem if the membrane potentials are observed and a LP problem if only spike times are observed, with a gIF model. Numerical robustness is discussed. We also explain how it is the use of a generalized IF neuron model instead of a leaky IF model that allows us to derive this algorithm. Furthermore, we point out how the L or LP adjustment mechanism is local to each unit and has the same structure as an Hebbian rule. A step further, this paradigm is easily generalizable to the design of input-output spike train transformations. This means that we have a practical method to program a spiking network, i.e. find a set of parameters allowing us to exactly reproduce the network output, given an input. Numerical verifications and illustrations are provided.
Spiking neural networks (SNN) are usually more energy-efficient as compared to Artificial neural networks (ANN), and the way they work has a great similarity with our brain. Back-propagation (BP) has shown its strong power in training ANN in recent y
Degree assortativity refers to the increased or decreased probability of connecting two neurons based on their in- or out-degrees, relative to what would be expected by chance. We investigate the effects of such assortativity in a network of theta ne
We consider the effects of correlations between the in- and out-degrees of individual neurons on the dynamics of a network of neurons. By using theta neurons, we can derive a set of coupled differential equations for the expected dynamics of neurons
Computation using brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency compared to the current analog neural networks (ANNs). Unfortunately, training SNNs with the same number
As neural networks get widespread adoption in resource-constrained embedded devices, there is a growing need for low-power neural systems. Spiking Neural Networks (SNNs)are emerging to be an energy-efficient alternative to the traditional Artificial