ترغب بنشر مسار تعليمي؟ اضغط هنا

The Science Case for PILOT I: Summary and Overview

261   0   0.0 ( 0 )
 نشر من قبل Laszlo L. Kiss
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed 2.5 m optical/infrared telescope to be located at Dome C on the Antarctic plateau. Conditions at Dome C are known to be exceptional for astronomy. The seeing (above ~30 m height), coherence time, and isoplanatic angle are all twice s good as at typical mid-latitude sites, while the water-vapour column, and the atmosphere and telescope thermal emission are all an order of magnitude better. These conditions enable a unique scientific capability for PILOT, which is addressed in this series of papers. The current paper presents an overview of the optical and instrumentation suite for PILO and its expected performance, a summary of the key science goals and observational approach for the facility, a discussion of the synergies between the science goals for PILOT and other telescopes, and a discussion of the future of Antarctic astronomy. Paper II and Paper III present details of the science projects divided, respectively, between the distant Universe (i.e., studies of first light, and the assembly and evolution of structure) and the nearby Universe (i.e., studies of Local Group galaxies, the Milky Way, and the Solar System).



قيم البحث

اقرأ أيضاً

PILOT (the Pathfinder for an International Large Optical Telescope is a proposed 2.5 m optical/infrared telescope to be located at DomeC on the Antarctic plateau. The atmospheric conditions at Dome C deliver a high sensitivity, high photometric preci sion, wide-field, high spatial resolution, and high-cadence imaging capability to the PILOT telescope. These capabilities enable a unique scientific potential for PILOT, which is addressed in this series of papers. The current paper presents a series of projects dealing with the nearby Universe that have been identified as key science drivers for the PILOT facility. Several projects are proposed that examine stellar populations in nearby galaxies and stellar clusters in order to gain insight into the formation and evolution processes of galaxies and stars. A series of projects will investigate the molecular phase of the Galaxy and explore the ecology of star formation, and investigate the formation processes of stellar and planetary systems. Three projects in the field of exoplanet science are proposed: a search for free-floating low-mass planets and dwarfs, a program of follow-up observations of gravitational microlensing events, and a study of infrared light-curves for previously discovered exoplanets. Three projects are also proposed in the field of planetary and space science: optical and near-infrared studies aimed at characterising planetary atmospheres, a study of coronal mass ejections from the Sun, and a monitoring program searching for small-scale Low Earth Orbit satellite debris items.
158 - Johan Richard 2019
We present the concept of BlueMUSE, a blue-optimised, medium spectral resolution, panoramic integral field spectrograph based on the MUSE concept and proposed for the Very Large Telescope. With an optimised transmission down to 350 nm, a larger FoV ( 1.4 x 1.4 arcmin$^2$) and a higher spectral resolution compared to MUSE, BlueMUSE will open up a new range of galactic and extragalactic science cases allowed by its specific capabilities, beyond those possible with MUSE. For example a survey of massive stars in our galaxy and the Local Group will increase the known population of massive stars by a factor $>$100, to answer key questions about their evolution. Deep field observations with BlueMUSE will also significantly increase samples of Lyman-alpha emitters, spanning the era of Cosmic Noon. This will revolutionise the study of the distant Universe: allowing the intergalactic medium to be detected unambiguously in emission, enabling the study of the exchange of baryons between galaxies and their surroundings. By 2030, at a time when the focus of most of the new large facilities (ELT, JWST) will be on the infra-red, BlueMUSE will be a unique facility, outperforming any ELT instrument in the Blue/UV. It will have a strong synergy with ELT, JWST as well as ALMA, SKA, Euclid and Athena.
The science case and associated science requirements for a next-generation Very Large Array (ngVLA) are described, highlighting the five key science goals developed out of a community-driven vision of the highest scientific priorities in the next dec ade. Building on the superb cm observing conditions and existing infrastructure of the VLA site in the U.S. Southwest, the ngVLA is envisaged to be an interferometric array with more than 10 times the sensitivity and spatial resolution of the current VLA and ALMA, operating at frequencies spanning $sim1.2 - 116$,GHz with extended baselines reaching across North America. The ngVLA will be optimized for observations at wavelengths between the exquisite performance of ALMA at submm wavelengths, and the future SKA-1 at decimeter to meter wavelengths, thus lending itself to be highly complementary with these facilities. The ngVLA will be the only facility in the world that can tackle a broad range of outstanding scientific questions in modern astronomy by simultaneously delivering the capability to: (1) unveil the formation of Solar System analogues; (2) probe the initial conditions for planetary systems and life with astrochemistry; (3) characterize the assembly, structure, and evolution of galaxies from the first billion years to the present; (4) use pulsars in the Galactic center as fundamental tests of gravity; and (5) understand the formation and evolution of stellar and supermassive blackholes in the era of multi-messenger astronomy.
The Q $&$ U Bolometric Interferometer for Cosmology (QUBIC) is a novel kind of polarimeter optimized for the measurement of the B-mode polarization of the Cosmic Microwave Background (CMB), which is one of the major challenges of observational cosmol ogy. The signal is expected to be of the order of a few tens of nK, prone to instrumental systematic effects and polluted by various astrophysical foregrounds which can only be controlled through multichroic observations. QUBIC is designed to address these observational issues with a novel approach that combines the advantages of interferometry in terms of control of instrumental systematic effects with those of bolometric detectors in terms of wide-band, background-limited sensitivity. The QUBIC synthesized beam has a frequency-dependent shape that results in the ability to produce maps of the CMB polarization in multiple sub-bands within the two physical bands of the instrument (150 and 220 GHz). These features make QUBIC complementary to other instruments and makes it particularly well suited to characterize and remove Galactic foreground contamination. In this article, first of a series of eight, we give an overview of the QUBIC instrument design, the main results of the calibration campaign, and present the scientific program of QUBIC including not only the measurement of primordial B-modes, but also the measurement of Galactic foregrounds. We give forecasts for typical observations and measurements: with three years of integration on the sky and assuming perfect foreground removal as well as stable atmospheric conditions from our site in Argentina, our simulations show that we can achieve a statistical sensitivity to the effective tensor-to-scalar ratio (including primordial and foreground B-modes) $sigma(r)=0.015$.
The Space VLBI 2020: Science and Technology Futures meeting was the second in The Future of High-Resolution Radio Interferometry in Space series. The first meeting (2018 September 5--6; Noordwijk, the Netherlands) focused on the full range of science applications possible for very long baseline interferometry (VLBI) with space-based antennas. Accordingly, the observing frequencies (wavelengths) considered ranged from below 1~MHz (> 300 m) to above 300~GHz (< 1 mm). For this second meeting, the focus was narrowed to mission concepts and the supporting technologies to enable the highest angular resolution observations at frequencies of 30~GHz and higher (< 1 cm). This narrowing of focus was driven by both scientific and technical considerations. First, results from the RadioAstron mission and the Event Horizon Telescope (EHT) have generated considerable excitement for studying the inner portions of black hole (BH) accretion disks and jets and testing elements of the General Theory of Relativity (GR). Second, the technologies and requirements involved in space-based VLBI differ considerably between 100~MHz and 100~GHz; a related consideration is that there are a number of existing instruments or mission concepts for frequencies of approximately 100~MHz and below, while it has been some time since attention has been devoted to space VLBI at frequencies above 10~GHz. This conference summary attempts to capture elements of presentations and discussions that occurred.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا