ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative differential thermal resistance induced by ballistic transport

115   0   0.0 ( 0 )
 نشر من قبل Wei-Rong Zhong
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using nonequilibrium molecular-dynamics simulations, we study the temperature dependence of the negative differential thermal resistance that appears in two-segment Frenkel-Kontorova lattices. We apply the theoretical method based on Landauer equation to obtain the relationship between the heat current and the temperature, which states a fundamental interpretation about the underlying physical mechanism of the negative differential thermal resistance. The temperature profiles and transport coefficients are demonstrated to explain the crossover from diffusive to ballistic transport. The finite-size effect is also discussed.

قيم البحث

اقرأ أيضاً

117 - Baowen Li , Lei Wang , 2004
We report on the first model of a thermal transistor to control heat flow. Like its electronic counterpart, our thermal transistor is a three-terminal device with the important feature that the current through the two terminals can be controlled by s mall changes in the temperature or in the current through the third terminal. This control feature allows us to switch the device between off (insulating) and on (conducting) states or to amplify a small current. The thermal transistor model is possible because of the negative differential thermal resistance.
We observed a strong modulation in the current-voltage characteristics of SrRuO$_3$/Nb:SrTiO$_3$ Schottky junctions by Mn substitution in SrRuO$_3$, which induces a metal-insulator transition in bulk. The temperature dependence of the junction ideali ty factor indicates an increased spatial inhomogeneity of the interface potential with substitution. Furthermore, negative differential resistance was observed at low temperatures, indicating the formation of a resonant state by Mn substitution. By spatially varying the position of the Mn dopants across the interface with single unit cell control, we can isolate the origin of this resonant state to the interface SrRuO$_3$ layer. These results demonstrate a conceptually different approach to controlling interface states by utilizing the highly sensitive response of conducting perovskites to impurities.
100 - Nuo Yang , Nianbei Li , Lei Wang 2007
We study thermal properties of one dimensional(1D) harmonic and anharmonic lattices with mass gradient. It is found that the temperature gradient can be built up in the 1D harmonic lattice with mass gradient due to the existence of gradons. The heat flow is asymmetric in the anharmonic lattices with mass gradient. Moreover, in a certain temperature region the {it negative differential thermal resistance} is observed. Possible applications in constructing thermal rectifier and thermal transistor by using the graded material are discussed.
Nonlinear electrical properties, such as negative differential resistance (NDR), are essential in numerous electrical circuits, including memristors. Several physical origins have been proposed to lead to the NDR phenomena in semiconductor devices in the last more than half a century. Here, we report NDR behavior formation in randomly oriented graphene-like nanostructures up to 37 K and high on-current density up to 10^5 A/cm^2. Our modeling of the current-voltage characteristics, including the self-heating effects, suggests that strong temperature dependence of the low-bias resistance is responsible for the nonlinear electrical behavior. Our findings open opportunities for the practical realization of the on-demand NDR behavior in nanostructures of 2D and 3D material-based devices via heat management in the conducting films and the underlying substrates.
We demonstrate a tunable negative differential resistance controlled by spin blockade in single electron transistors. The single electron transistors containing a few electrons and spin polarized source and drain contacts were formed in GaAs/GaAlAs h eterojunctions using metallic gates. Coulomb blockade measurements performed as a function of applied source-drain bias, electron number and magnetic field reveal well defined regimes where a decrease in the current is observed with increasing bias. We establish that the origin of the negative differential regime is the spin-polarized detection of electrons combined with a long spin relaxation time in the dot. These results indicate new functionalities that may be utilized in nano-spintronic devices in which the spin state is electro-statically controlled via the electron occupation number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا