ﻻ يوجد ملخص باللغة العربية
In this article we are interested in the derivation of efficient domain decomposition methods for the viscous primitive equations of the ocean. We consider the rotating 3d incompressible hydrostatic Navier-Stokes equations with free surface. Performing an asymptotic analysis of the system with respect to the Rossby number, we compute an approximated Dirichlet to Neumann operator and build an optimized Schwarz waveform relaxation algorithm. We establish the well-posedness of this algorithm and present some numerical results to illustrate the method.
Waveform Relaxation method (WR) is a beautiful algorithm to solve Ordinary Differential Equations (ODEs). However, because of its poor convergence capability, it was rarely used. In this paper, we propose a new distributed algorithm, named Waveform T
Stochastic equations play an important role in computational science, due to their ability to treat a wide variety of complex statistical problems. However, current algorithms are strongly limited by their sampling variance, which scales proportionat
A new set of nonlocal boundary conditions are proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive eq
In this article, we analyse the convergence behaviour and scalability properties of the one-level Parallel Schwarz method (PSM) for domain decomposition problems in which the boundaries of many subdomains lie in the interior of the global domain. Suc
When the obstacle problem of clamped Kirchhoff plates is discretized by a partition of unity method, the resulting discrete variational inequalities can be solved by a primal-dual active set algorithm. In this paper we develop and analyze additive Sc