ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological change of the Fermi surface in ternary iron-pnictides with reduced c/a ratio: A dHvA study of CaFe2P2

115   0   0.0 ( 0 )
 نشر من قبل Amalia Coldea
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a de Haas-van Alphen effect study of the Fermi surface of CaFe2P2 using low temperature torque magnetometry up to 45 T. This system is a close structural analogue of the collapsed tetragonal non-magnetic phase of CaFe2As2. We find the Fermi surface of CaFe2P2 to differ from other related ternary phosphides in that its topology is highly dispersive in the c-axis, being three-dimensional in character and with identical mass enhancement on both electron and hole pockets (~1.5). The dramatic change in topology of the Fermi surface suggests that in a state with reduced (c/a) ratio, when bonding between pnictogen layers becomes important, the Fermi surface sheets are unlikely to be nested.

قيم البحث

اقرأ أيضاً

Evolution of Fermi surface (FS) states of NdFeAs$_{1-x}$P$_x$O$_{0.9}$F$_{0.1}$ single crystals with As/P substitution has been investigated. The critical temperature $T_{rm c}$ and the power law exponent ($n$) of temperature-dependent resistivity ($ rho(T) = rho_0 + AT^n$) show a clear correlation above $x=$0.2, suggesting that $T_{rm c}$ is enhanced with increasing bosonic fluctuation in the same type of FS state. Around $x=$0.2, all the transport properties show anomalies, indicating that $x$$sim$0.2 is the critical composition of drastic FS change. The angle resolved photoemission spectroscopy has more directly revealed the distinct change of FS around $x=$0.2, that one hole FS disappears at Brillouin zone center and the other FS with propeller like shape appears at zone corner with decreasing $x$. These results are indicative of the existence of two types of FS state with different nesting conditions that are related with two $T_{rm c}$-rising mechanisms in this system.
Within the framework of density functional theory we investigate the nature of magnetism in various families of Fe-based superconductors. (i) We show that magnetization of stripe-type antiferromagnetic order always becomes stronger when As is substit uted by Sb in LaOFeAs, BaFe$_2$As$_2$ and LiFeAs. By calculating Pauli susceptibilities, we attribute the magnetization increase obtained after replacing As by Sb to the enhancement of an instability at $(pi,pi)$. This points to a strong connection between Fermi surface nesting and magnetism, which supports the theory of the itinerant nature of magnetism in various families of Fe-based superconductors. (ii) We find that within the family LaOFe$Pn$ ($Pn$=P, As, Sb, Bi) the absence of an antiferromagnetic phase in LaOFeP and its presence in LaOFeAs can be attributed to the competition of instabilities in the Pauli susceptibility at $(pi,pi)$ and $(0,0)$, which further strengthens the close relation between Fermi surface nesting and experimentally observed magnetization. (iii) Finally, based on our relaxed structures and Pauli susceptibility results, we predict that LaOFeSb upon doping or application of pressure should be a candidate for a superconductor with the highest transition temperature among the hypothetical compounds LaOFeSb, LaOFeBi, ScOFeP and ScOFeAs while the parent compounds LaOFeSb and LaOFeBi should show at ambient pressure a stripe-type antiferromagnetic metallic state.
High-temperature superconductivity in iron-arsenic materials (pnictides) near an antiferromagnetic phase raises the possibility of spin-fluctuation-mediated pairing. However, the interplay between antiferromagnetic fluctuations and superconductivity remains unclear in the underdoped regime, which is closer to the antiferromagnetic phase. Here we report that the superconducting gap of the underdoped pnictides scales linearly with the transition temperature, and that a distinct pseudogap coexisting with the SC gap develops on underdoping. This pseudogap occurs on Fermi surface sheets connected by the antiferromagnetic wavevector, where the superconducting pairing is stronger as well, suggesting that antiferromagnetic fluctuations drive both the pseudogap and superconductivity. Interestingly, we found that the pseudogap and the spectral lineshape vary with the Fermi surface quasi-nesting conditions in a fashion that shares similarities with the nodal-antinodal dichotomous behaviour observed in underdoped copper oxide superconductors.
190 - Lihua Pan , Jian Li , Yuan-Yen Tai 2013
Based on the minimum two-orbital model and the phase diagram recently proposed by Tai et al. (Europhys. Lett. textbf{103}, 67001(2013)) for both electron- and hole-doped 122 iron-based superconducting compounds, we use the Bogoliubov-de Gennes equati ons to perform a comprehensive investigation of the evolution of the Fermi surface (FS) topology in the presence of the collinear spin-density-wave (SDW) order as the doping is changed. In the parent compound, the ground state is the SDW order, where the FS is not completely gapped, and two types of Dirac cones, one electron-doped and the other hole-doped emerge in the magnetic Brillouin zone. Our findings are qualitatively consistent with recent angle-resolved photoemission spectroscopy and magneto-resistivity measurements. We also examine the FS evolution of both electron- and hole-doped cases and compare them with measurements, as well as with those obtained by other model Hamiltonians.
Recent measurements of Fermi surface with de Haas-van Alphen oscillations in LaFePO showed a shrinking of the Fermi pockets with respect to first-principle LDA calculations, suggesting an energy shift of the hole and electrons bands with respect to L DA. We show that these shifts are a natural consequence of the strong particle-hole asymmetry of electronic bands in pnictides, and that they provide an indirect experimental evidence of a dominant interband scattering in these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا