ترغب بنشر مسار تعليمي؟ اضغط هنا

Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources

128   0   0.0 ( 0 )
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Axion Like Particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as AGNs. Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources... [ABRIDGED] The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging atmospheric Cherenkov telescopes like CANGAROO, HESS, MAGIC and VERITAS.



قيم البحث

اقرأ أيضاً

It has been recently claimed by two different groups that the spectral modulation observed in gamma rays from Galactic pulsars and supernova remnants can be due to conversion of photons into ultra-light axion-like-particles (ALPs) in large-scale Gala ctic magnetic fields. While we show the required best-fit photon-ALP coupling, $g_{agamma} sim 2 times 10^{-10}$ GeV${}^{-1}$, to be consistent with constraints from observations of photon-ALPs mixing in vacuum, this is in conflict with other bounds, specifically from the CAST solar axion limit, from the helium-burning lifetime in globular clusters, and from the non-observations of gamma rays in coincidence with SN 1987A. In order to reconcile these different results, we propose that environmental effects in matter would suppress the ALP production in dense astrophysical plasma, allowing to relax previous bounds and make them compatible with photon-ALP
185 - Pierre Brun 2013
The high-energy Universe is potentially a great laboratory for searching new light bosons such as axion-like particles (ALPs). Cosmic sources are indeed the scene of violent phenomena that involve strong magnetic field and/or very long baselines, whe re the effects of the mixing of photons with ALPs could lead to observable effects. Two examples are archetypal of this fact, that are the Universe opacity to gamma-rays and the imprints of astrophysical magnetic turbulence in the energy spectra of high-energy sources. In the first case, hints for the existence of ALPs can be proposed whereas the second one is used to put constraints on the ALP mass and coupling to photons.
Axion-like particles (ALPs) provide a feasible explanation for the observed low TeV opacity of the Universe. If the low TeV opacity is caused by ALP, then the $>{rm TeV}$ fluxes of unresolved extragalactic point sources will be correspondingly enhanc ed, resulting in an enhancement of the observed EGB spectrum at high energies. In this work, we for the first time investigate the ALP effect on the EGB spectrum. Our results show that the existence of ALPs can cause the EGB spectrum to deviate from a pure EBL absorption case. The deviation occurs at about $sim$1 TeV and current EGB measurements by Fermi-LAT cannot identify such an effect. The observation from forthcoming VHE instruments like LHAASO and CTA may be useful for studying this effect. We find that although most of the sensitive ALP parameters have been ruled out by existing ALP results, some unrestricted parameters could be probed with the EGB observation around 10 TeV.
It was recently pointed out that very energetic subclasses of supernovae (SNe), like hypernovae and superluminous SNe, might host ultra-strong magnetic fields in their core. Such fields may catalyze the production of feebly interacting particles, cha nging the predicted emission rates. Here we consider the case of axion-like particles (ALPs) and show that the predicted large scale magnetic fields in the core contribute significantly to the ALP production, via a coherent conversion of thermal photons. Using recent state-of-the-art SN simulations including magnetohydrodynamics, we find that if ALPs have masses $m_a sim {mathcal O}(10), rm MeV$, their emissivity via magnetic
Dark Matter (DM) may be comprised of axion-like particles (ALPs) with couplings to photons and the standard model fermions. In this paper we study photon signals arising from cosmic ray (CR) electron scattering on background ALPs. For a range of mass es we find that these bounds can place competitive new constraints on the ALP-electron coupling, although in many models lifetime constraints may supersede these bounds. In addition to current Fermi constraints, we also consider future e-Astrogram bounds which will have greater sensitivity to ALP-CR induced gamma-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا