ﻻ يوجد ملخص باللغة العربية
AIMS Our aim is to characterize the size, mass, density and temperature profiles of the protostellar envelope of HH~46 IRS 1 and its surrounding cloud material as well as the effect the outflow has on its environment.METHODS The CHAMP+ and LABOCA arrays on the APEX telescope, combined with lower frequency line receivers, are used to obtain a large continuum map and smaller heterodyne maps in various isotopologues of CO and HCO+. The high-J lines of CO (6--5 and 7--6) and its isotopologues together with [C I] 2--1, observed with CHAMP+, are used to probe the warm molecular gas in the inner few hundred AU and in the outflowing gas. The data are interpreted with continuum and line radiative transfer models. RESULTS Broad outflow wings are seen in CO low- and high-J lines at several positions, constraining the gas temperatures to a constant value of ~100 K along the red outflow axis and to ~60 K for the blue outflow. The derived outflow mass is of order 0.4--0.8 M_sol, significantly higher than previously found. The bulk of the strong high-J CO line emission has a surprisingly narrow width, however, even at outflow positions. These lines cannot be fit by a passively heated model of the HH 46 IRS envelope. We propose that it originates from photon heating of the outflow cavity walls by ultraviolet photons originating in outflow shocks and the accretion disk boundary layers. At the position of the bow shock itself, the UV photons are energetic enough to dissociate CO. The envelope mass of ~5 M_sol is strongly concentrated towards HH 46 IRS with a density power law of -1.8.
(Abridged) Photometry of archival Spitzer observations of the Large Magellanic Cloud (LMC) are used to search for young stellar objects (YSOs). Simple mid-infrared selection criteria were used to exclude most normal and evolved stars and background g
We are carrying out multi-frequency radio continuum observations, using the Australia Telescope Compact Array, to systematically search for collimated ionized jets towards high-mass young stellar objects (HMYSOs). Here we report observations at 1.4,
Context. Protoplanetary disks show large diversity regarding their morphology and dust composition. With mid-infrared interferometry the thermal emission of disks can be spatially resolved, and the distribution and properties of the dust within can b
We present a study of the kinematical properties of a small sample of nearby near-infrared bright massive and intermediate mass young stellar objects using emission lines sensitive to discs and winds. We show for the first time that the broad ($sim50
The Young Stellar Object (YSO) W33A is one of the best known examples of a massive star still in the process of forming. Here we present Gemini North ALTAIR/NIFS laser-guide star adaptive-optics assisted K-band integral-field spectroscopy of W33A and