ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized Spots in Anisotropic Open Universes

38   0   0.0 ( 0 )
 نشر من قبل Peter Coles
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the temperature and polarization patterns generated in anisotropic cosmological models drawn from the Bianchi classification. We show that localized features in the temperature pattern, perhaps similar to the cold spot observed in the Wilkinson Microwave Anisotropy Probe (WMAP) data, can be generated in models with negative spatial curvature, i.e. Bianchi types V and VII$_{h}$. Both these models also generate coherent polarization patterns. In Bianchi VII$_h$, however, rotation of the polarization angle as light propagates along geodesics can convert E modes into B modes but in Bianchi V this is not necessarily the case. It is in principle possible, therefore, to generate localized temperature features without violating existing observational constraints on the odd-parity component of the polarization of the cosmic microwave background.

قيم البحث

اقرأ أيضاً

In this article, we study a type of one-field approach for open inflationary universe scenario in the context of braneworld models with a Gauss-Bonnet correction term. For a one-bubble universe model, we determine and characterize the existence of th e Coleman-De Lucia instanton together with the period of inflation after tunneling has occurred. Our results are compared those analogous obtained when the usual Einstein Theory of Gravitation is used.
An important, and potentially detectable, signature of a non-trivial topology for the universe is the presence of so called circles-in-the-sky in the cosmic microwave background (CMB). Recent searches, confined to antipodal and nearly antipodal circl es, have however failed to detect any. This outcome, coupled with recent theoretical results concerning the detectability of very nearly flat universes, is sufficient to exclude a detectable non-trivial cosmic topology for most observers in the inflationary limit ($0< |Omega_{tot}-1| lesssim 10^{-5}$). In a recent paper we have studied the consequences of these searches for circles if the Universe turns out to be exactly flat ($Omega_{tot} = 1 $) as is often assumed. More specifically, we have derived the maximum angles of deviation possible from antipodicity of pairs of matching circles associated with the shortest closed geodesic for all multiply-connected flat orientable $3$-manifolds. These upper bounds on the deviation from antipodicity demonstrate that in a flat universe for some classes of topology there remains a substantial fraction of observers for whom the deviation from antipodicity of the matching circles is considerably larger than zero, which implies that the searches for circles-in-the-sky undertaken so far are not enough to exclude the possibility of a detectable non-trivial flat topology. Here we briefly review these results and discuss their consequences in the search for circles-in-the-sky in a flat universes.
85 - David Polarski 2013
We consider a class of toy models where a spatially flat universe is filled with a perfect fluid. The dynamics is found exactly for all these models. In one family, the perfect fluid is of the phantom type and we find that the universe is first contr acting and then expanding while the dynamics is always accelerated. In a second family, the universe is first in an accelerated expansion stage, then in a decelerated expansion stage until it reaches a turning point after which it contracts in a decelerated way (increasing contraction rate) followed by another accelerated stage (decreasing contraction rate). We also consider the possibility to embed this perfect fluid in a realistic cosmology. The first family cannot be viable in a conventional big bang universe and requires a rebound in the very early universe. The second family is viable in the range $0<1+w_{DE,0}lesssim 0.09$ for a spatially closed universe with a curvature satisfying current bounds. Though many of the models in this family cannot be distinguished today from a universe dominated by a cosmological constant, the present accelerated expansion is transient and these universes will reach a turning point in the future before entering a contraction phase.
A great deal of attention has been given to the so-called Cold Spot in maps of the cosmic microwave background (CMB) temperature. We present a similar analysis, searching for extremal spots in the CMB lensing convergence and lensing potential maps fr om the Planck 2018 data release. We perform a multi-scale and multi-filter analysis using the first three members of the Mexican-hat wavelet family to search for extremal features of different shapes and sizes. Although an initial analysis appears to show the existence of some extremal spots at scales below about 5 degree, we conclude, after marginalising over all scales and filters, that no significant features are detected in the lensing maps. We conclude that in terms of maxima and minima of various sizes, the lensing data have similar statistical properties to Gaussian simulations.
Both simulation and observational data have shown that the spin and shape of dark matter halos are correlated with their nearby large-scale environment. As structure formation on different scales is strongly coupled, it is trick to disentangle the fo rmation of halo with the large-scale environment, making it difficult to infer which is the driving force for the correlation between halo spin/shape with the large-scale structure. In this paper, we use N-body simulation to produce twin Universes that share the same initial conditions on small scales but different on large scales. This is achieved by changing the random seeds for the phase of those k modes smaller than a given scale in the initial conditions. In this way, we are able to disentangle the formation of halo and large-scale structure, making it possible to investigate how halo spin and shape correspond to the change of environment on large scales. We identify matching halo pairs in the twin simulations as those sharing the maximum number of identical particles within each other. Using these matched halo pairs, we study the cross match of halo spin and their correlation with the large-scale structure. It is found that when the large-scale environment changes (eigenvector) between the twin simulations, the halo spin has to rotate accordingly, although not significantly, to maintain the universal correlation seen in each simulation. Our results suggest that the large-scale structure is the main factor to drive the correlation between halo properties and their environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا