ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Self-Stabilizing Minimum Spanning Tree Construction with Loop-free Property

302   0   0.0 ( 0 )
 نشر من قبل Lelia Blin
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Lelia Blin




اسأل ChatGPT حول البحث

The minimum spanning tree (MST) construction is a classical problem in Distributed Computing for creating a globally minimized structure distributedly. Self-stabilization is versatile technique for forward recovery that permits to handle any kind of transient faults in a unified manner. The loop-free property provides interesting safety assurance in dynamic networks where edge-cost changes during operation of the protocol. We present a new self-stabilizing MST protocol that improves on previous known ap- proaches in several ways. First, it makes fewer system hypotheses as the size of the network (or an upper bound on the size) need not be known to the participants. Second, it is loop-free in the sense that it guarantees that a spanning tree structure is always preserved while edge costs change dynamically and the protocol adjusts to a new MST. Finally, time complexity matches the best known results, while space complexity results show that this protocol is the most efficient to date.



قيم البحث

اقرأ أيضاً

We present a novel self-stabilizing algorithm for minimum spanning tree (MST) construction. The space complexity of our solution is $O(log^2n)$ bits and it converges in $O(n^2)$ rounds. Thus, this algorithm improves the convergence time of all previo usly known self-stabilizing asynchronous MST algorithms by a multiplicative factor $Theta(n)$, to the price of increasing the best known space complexity by a factor $O(log n)$. The main ingredient used in our algorithm is the design, for the first time in self-stabilizing settings, of a labeling scheme for computing the nearest common ancestor with only $O(log^2n)$ bits.
The minimum degree spanning tree (MDST) problem requires the construction of a spanning tree $T$ for graph $G=(V,E)$ with $n$ vertices, such that the maximum degree $d$ of $T$ is the smallest among all spanning trees of $G$. In this paper, we present two new distributed approximation algorithms for the MDST problem. Our first result is a randomized distributed algorithm that constructs a spanning tree of maximum degree $hat d = O(dlog{n})$. It requires $O((D + sqrt{n}) log^2 n)$ rounds (w.h.p.), where $D$ is the graph diameter, which matches (within log factors) the optimal round complexity for the related minimum spanning tree problem. Our second result refines this approximation factor by constructing a tree with maximum degree $hat d = O(d + log{n})$, though at the cost of additional polylogarithmic factors in the round complexity. Although efficient approximation algorithms for the MDST problem have been known in the sequential setting since the 1990s, our results are first efficient distributed solutions for this problem.
Given an undirected, weighted graph, the minimum spanning tree (MST) is a tree that connects all of the vertices of the graph with minimum sum of edge weights. In real world applications, network designers often seek to quickly find a replacement edg e for each edge in the MST. For example, when a traffic accident closes a road in a transportation network, or a line goes down in a communication network, the replacement edge may reconnect the MST at lowest cost. In the paper, we consider the case of finding the lowest cost replacement edge for each edge of the MST. A previous algorithm by Tarjan takes $O(m alpha(m, n))$ time, where $alpha(m, n)$ is the inverse Ackermanns function. Given the MST and sorted non-tree edges, our algorithm is the first that runs in $O(m+n)$ time and $O(m+n)$ space to find all replacement edges. Moreover, it is easy to implement and our experimental study demonstrates fast performance on several types of graphs. Additionally, since the most vital edge is the tree edge whose removal causes the highest cost, our algorithm finds it in linear time.
This paper gives a new deterministic algorithm for the dynamic Minimum Spanning Forest (MSF) problem in the EREW PRAM model, where the goal is to maintain a MSF of a weighted graph with $n$ vertices and $m$ edges while supporting edge insertions and deletions. We show that one can solve the dynamic MSF problem using $O(sqrt n)$ processors and $O(log n)$ worst-case update time, for a total of $O(sqrt n log n)$ work. This improves on the work of Ferragina [IPPS 1995] which costs $O(log n)$ worst-case update time and $O(n^{2/3} log{frac{m}{n}})$ work.
134 - Michal Dory 2018
In the minimum $k$-edge-connected spanning subgraph ($k$-ECSS) problem the goal is to find the minimum weight subgraph resistant to up to $k-1$ edge failures. This is a central problem in network design, and a natural generalization of the minimum sp anning tree (MST) problem. While the MST problem has been studied extensively by the distributed computing community, for $k geq 2$ less is known in the distributed setting. In this paper, we present fast randomized distributed approximation algorithms for $k$-ECSS in the CONGEST model. Our first contribution is an $widetilde{O}(D + sqrt{n})$-round $O(log{n})$-approximation for 2-ECSS, for a graph with $n$ vertices and diameter $D$. The time complexity of our algorithm is almost tight and almost matches the time complexity of the MST problem. For larger constant values of $k$ we give an $widetilde{O}(n)$-round $O(log{n})$-approximation. Additionally, in the special case of unweighted 3-ECSS we show how to improve the time complexity to $O(D log^3{n})$ rounds. All our results significantly improve the time complexity of previous algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا