ﻻ يوجد ملخص باللغة العربية
Josephson tunnel junctions are widely used as nonlinear elements in superconducting circuits such as low noise amplifiers and quantum bits. However, microscopic defects in the oxide tunnel barrier can produce low and high frequency noise which can potentially limit the coherence times and quality factors of resonant circuits. Weak link Josephson junctions are an attractive alternative provided that sufficient nonlinearity can be engineered. We compute the current phase relation for superconducting weak links, with dimensions comparable to the zero temperature coherence length, connected to two and three dimensional superconducting electrodes. Our results indicate that 50-100 nm long aluminum nanobridges connected with three dimensional banks can be used to construct nonlinear oscillators for bifurcation amplification. We also show that under static current bias, these oscillators have a sufficiently anharmonic energy level structure to form a qubit. Such weak link junctions thus present a practical new route for realizing sensitive quantum circuits.
We present the driven response at T=30mK of 6 GHz superconducting resonators constructed from capacitively-shunted three dimensional (3D) aluminum nanobridge superconducting quantum interference devices (nanoSQUIDs). We observe flux modulation of the
WTe2, as a type-II Weyl semimetal, has 2D Fermi arcs on the (001) surface in the bulk and 1D helical edge states in its monolayer. These features have recently attracted wide attention in condensed matter physics. However, in the intermediate regime
We study quantum phase-slip (QPS) processes in a superconducting ring containing N Josephson junctions and threaded by an external static magnetic flux. In a such system, a QPS consists of a quantum tunneling event connecting two distinct classical s
The Josephson current in a diffusive superconductor/ferromagnet/superconductor junction with precessing magnetization is calculated within the quasiclassical theory of superconductivity. When the junction is phase-biased, a stationary current (withou
We investigate the Josephson radiation emitted by a junction made of a quantum dot coupled to two conventional superconductors. Close to resonance, the particle-hole symmetric Andreev states that form in the junction are detached from the continuum a