ﻻ يوجد ملخص باللغة العربية
Most theories of homogeneous nucleation are based on a Fokker-Planck-like description of the behavior of the mass of clusters. Here we will show that these approaches are incomplete for a large class of nucleating systems, as they assume the effective dynamics of the clusters to be Markovian, i.e., memoryless. We characterize these non-Markovian dynamics and show how this influences the dynamics of clusters during nucleation. Our results are validated by simulations of a three-dimensional Ising model with locally conserved magnetization.
Recent experiments using fluorescence spectroscopy have been able to probe the dynamics of conformational fluctuations in proteins. The fluctuations are Gaussian but do not decay exponentially, and are therefore, non-Markovian. We present a theory wh
The persistence exponent theta for the global order parameter, M(t), of a system quenched from the disordered phase to its critical point describes the probability, p(t) sim t^{-theta}, that M(t) does not change sign in the time interval t following
The collective and purely relaxational dynamics of quantum many-body systems after a quench at temperature $T=0$, from a disordered state to various phases is studied through the exact solution of the quantum Langevin equation of the spherical and th
Non-Markovian dynamics pervades human activity and social networks and it induces memory effects and burstiness in a wide range of processes including inter-event time distributions, duration of interactions in temporal networks and human mobility. H
The classical Hall effect resulting from the impact of external magnetic and electric fields on the non-Markovian dynamics of charge carriers is studied. The dependence of the tangent of the Hall angle on the magnetic field is derived and compared wi