ﻻ يوجد ملخص باللغة العربية
Exact and nonperturbative quantum master equation can be constructed via the calculus on path integral. It results in hierarchical equations of motion for the reduced density operator. Involved are also a set of well--defined auxiliary density operators that resolve not just system--bath coupling strength but also memory. In this work, we scale these auxiliary operators individually to achieve a uniform error tolerance, as set by the reduced density operator. An efficient propagator is then proposed to the hierarchical Liouville--space dynamics of quantum dissipation. Numerically exact studies are carried out on the dephasing effect on population transfer in the simple stimulated Raman adiabatic passage scheme. We also make assessments on several perturbative theories for their applicabilities in the present system of study.
The influence of an external field acting differently on the two constituents of a binary colloidal mixture performing Brownian dynamics is investigated by computer simulations and a simple theory. In our model, one half of the particles ($A$-particl
We investigate the effects of dissipation on the quantum dynamics of many-body systems at quantum transitions, especially considering those of the first order. This issue is studied within the paradigmatic one-dimensional quantum Ising model. We anal
The many-body physics at quantum phase transitions shows a subtle interplay between quantum and thermal fluctuations, emerging in the low-temperature limit. In this review, we first give a pedagogical introduction to the equilibrium behavior of syste
We investigate the competition of coherent and dissipative dynamics in many-body systems at continuous quantum transitions. We consider dissipative mechanisms that can be effectively described by Lindblad equations for the density matrix of the syste
We determine the exact time-dependent non-idempotent one-particle reduced density matrix and its spectral decomposition for a harmonically confined two-particle correlated one-dimensional system when the interaction terms in the Schrodinger Hamiltoni