ﻻ يوجد ملخص باللغة العربية
The time evolution of the out-of-equilibrium Mott insulator is investigated numerically through calculations of space-time resolved density and entropy profiles resulting from the release of a gas of ultracold fermionic atoms from an optical trap. For adiabatic, moderate and sudden switching-off of the trapping potential, the out-of-equilibrium dynamics of the Mott insulator is found to differ profoundly from that of the band insulator and the metallic phase, displaying a self-induced stability that is robust within a wide range of densities, system sizes and interaction strengths. The connection between the entanglement entropy and changes of phase, known for equilibrium situations, is found to extend to the out-of-equilibrium regime. Finally, the relation between the systems long time behavior and the thermalization limit is analyzed.
We study near-equilibrium thermodynamics of bosonic atoms in a two-dimensional optical lattice by ramping up the lattice depth to convert a superfluid into an inhomogeneous mixture of superfluid and Mott insulator. Detailed study of in situ density p
We discuss the existence of a nontrivial topological phase in one-dimensional interacting systems described by the extended Bose-Hubbard model with a mean filling of one boson per site. Performing large-scale density-matrix renormalization group calc
Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transp
The non-equilibrium dynamics of a gas of cold atoms in which Rydberg states are off-resonantly excited is studied in the presence of noise. The interplay between interaction and off-resonant excitation leads to an initial dynamics where aggregates of
The dynamics of a one-dimensional two-component Fermi gas in the presence of a quasi-periodic optical lattice (OL) is investigated by means of a Density Functional Theory approach. Inspired by the protocol implemented in recent cold-atom experiments,