ﻻ يوجد ملخص باللغة العربية
The quantum Hall plateau transition was studied at temperatures down to 1 mK in a random alloy disordered high mobility two-dimensional electron gas. A perfect power-law scaling with kappa=0.42 was observed from 1.2K down to 12mK. This perfect scaling terminates sharply at a saturation temperature of T_s~10mK. The saturation is identified as a finite-size effect when the quantum phase coherence length (L_{phi} ~ T^{-p/2}) reaches the sample size (W) of millimeter scale. From a size dependent study, T_s propto W^{-1} was observed and p=2 was obtained. The exponent of the localization length, determined directly from the measured kappa and p, is u=2.38, and the dynamic critical exponent z = 1.
The temperature dependence of the magneto-conductivity in graphene shows that the widths of the longitudinal conductivity peaks, for the N=1 Landau level of electrons and holes, display a power-law behavior following $Delta u propto T^{kappa}$ with
Using different experimental techniques we examine the dynamical scaling of the quantum Hall plateau transition in a frequency range f = 0.1-55 GHz. We present a scheme that allows for a simultaneous scaling analysis of these experiments and all othe
We report distinctive magnetotransport properties of a graphene p-n-p junction prepared by controlled diffusion of metallic contacts. In most cases, materials deposited on a graphene surface introduce substantial carrier scattering, which greatly red
We report quantum Hall experiments on the plateau-insulator transition in a low mobility In_{.53} Ga_{.47} As/InP heterostructure. The data for the longitudinal resistance rho_{xx} follow an exponential law and we extract a critical exponent kappa= .
We show how to model the transition between distinct quantum Hall plateaus in terms of D-branes in string theory. A low energy theory of 2+1 dimensional fermions is obtained by considering the D3-D7 system, and the plateau transition corresponds to m