ترغب بنشر مسار تعليمي؟ اضغط هنا

Do entanglements need some superluminal hidden connection?

42   0   0.0 ( 0 )
 نشر من قبل Sofia Wechsler
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sofia Wechsler




اسأل ChatGPT حول البحث

Local hidden variables theories didnt succeed to explain the correlations revealed by entanglements. It is obvious that the explanation of the correlations stands in non-local effects, but nobody has ever detected any carriers that travel with superluminal velocity s.t. they could candidate for some superluminal connection between distant particles, in order to adjust the results to the correlations. This text explains that the role of creating the correlations is played by what is called here the Negative. This is the part that was removed from the wave function of the independent particles, in order to obtain the entanglement. As it is shown here, for du-particle experiments the Negative consists in du-particle wave-packets. They enter both regions where the particles are tested, s.t. the Negative knows the response given by one particle, and erases the possibilities of forbidden responses from the other particle.

قيم البحث

اقرأ أيضاً

76 - Sofia Wechsler 2009
A recent article of Colbeck and Renner tackled the problem whether entanglements may be explained by combined models of local and non-local hidden variables. To the difference from previous works they considered models in which each pair of entangled particles behaves in the same way, and the particles in the pair are equivalent, i.e. each of them produces its response to a measurement according to both local and non-local hidden variables. Their article aimed at proving that the local hidden variable component in such models has no effect on the measurement results, i.e. only the non-local variables are relevant. However, their proof deals with a very restrictive case and assumes questionable constraints on the hidden variables. The present text studies the Colbeck and Renner class of models on a less restrictive case and under no constraints on the hidden variables. It is shown again that the local component cannot have any influence on the results. However, the Colbeck and Renner class of models is not the only one possible. A different class is described, and it admits local hidden variables by the side of the non-local influence. This class presents a couple of advantages.
A well-known manifestation of quantum entanglement is that it may lead to correlations that are inexplicable within the framework of a locally causal theory --- a fact that is demonstrated by the quantum violation of Bell inequalities. The precise re lationship between quantum entanglement and the violation of Bell inequalities is, however, not well understood. While it is known that entanglement is necessary for such a violation, it is not clear whether all entangled states violate a Bell inequality, even in the scenario where one allows joint operations on multiple copies of the state and local filtering operations before the Bell experiment. In this paper we show that all entangled states, namely, all non-fully-separable states of arbitrary Hilbert space dimension and arbitrary number of parties, violate a Bell inequality when combined with another state which on its own cannot violate the same Bell inequality. This result shows that quantum entanglement and quantum nonlocality are in some sense equivalent, thus giving an affirmative answer to the aforementioned open question. It follows from our result that two entangled states that are apparently useless in demonstrating quantum nonlocality via a specific Bell inequality can be combined to give a Bell violation of the same inequality. Explicit examples of such activation phenomenon are provided.
104 - Wim van Dam 2002
Almost all of the most successful quantum algorithms discovered to date exploit the ability of the Fourier transform to recover subgroup structure of functions, especially periodicity. The fact that Fourier transforms can also be used to capture shif t structure has received far less attention in the context of quantum computation. In this paper, we present three examples of ``unknown shift problems that can be solved efficiently on a quantum computer using the quantum Fourier transform. We also define the hidden coset problem, which generalizes the hidden shift problem and the hidden subgroup problem. This framework provides a unified way of viewing the ability of the Fourier transform to capture subgroup and shift structure.
We consider reciprocal metasurfaces with engineered reflection and transmission coefficients and study the role of normal (with respect to the metasurface plane) electric and magnetic polarizations on the possibilities to shape the reflection and tra nsmission responses. We demonstrate in general and on a representative example that the presence of normal components of the polarization vectors does not add extra degrees of freedom in engineering the reflection and transmission characteristics of metasurfaces. Furthermore, we discuss advantages and disadvantages of equivalent volumetric and fully planar realizations of the same properties of functional metasurfaces.
We examine the possibility of soft cosmology, namely small deviations from the usual framework due to the effective appearance of soft-matter properties in the Universe sectors. One effect of such a case would be the dark energy to exhibit a differen t equation-of-state parameter at large scales (which determine the universe expansion) and at intermediate scales (which determine the sub-horizon clustering and the large scale structure formation). Concerning soft dark matter, we show that it can effectively arise due to the dark-energy clustering, even if dark energy is not soft. We propose a novel parametrization introducing the softness parameters of the dark sectors. As we see, although the background evolution remains unaffected, due to the extreme sensitivity and significant effects on the global properties even a slightly non-trivial softness parameter can improve the clustering behavior and alleviate e.g. the $fsigma_8$ tension. Lastly, an extension of the cosmological perturbation theory and a detailed statistical mechanical analysis, in order to incorporate complexity and estimate the scale-dependent behavior from first principles, is necessary and would provide a robust argumentation in favour of soft cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا