ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport in strongly correlated two dimensional electron fluids

101   0   0.0 ( 0 )
 نشر من قبل Sergey Kravchenko
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an overview of the measured transport properties of the two dimensional electron fluids in high mobility semiconductor devices with low electron densities, and of some of the theories that have been proposed to account for them. Many features of the observations are not easily reconciled with a description based on the well understood physics of weakly interacting quasiparticles in a disordered medium. Rather, they reflect new physics associated with strong correlation effects, which warrant further study.



قيم البحث

اقرأ أيضاً

We report on angle-dependent measurements of the sheet resistances and Hall coefficients of electron liquids in SmTiO3/SrTiO3/SmTiO3 quantum well structures, which were grown by molecular beam epitaxy on (001) DyScO3. We compare their transport prope rties with those of similar structures grown on LSAT [(La0.3Sr0.7)(Al0.65Ta0.35)O3]. On DyScO3, planar defects normal to the quantum wells lead to a strong in-plane anisotropy in the transport properties. This allows for quantifying the role of defects in transport. In particular, we investigate differences in the longitudinal and Hall scattering rates, which is a non-Fermi liquid phenomenon known as lifetime separation. The residuals in both the longitudinal resistance and Hall angle were found to depend on the relative orientations of the transport direction to the planar defects. The Hall angle exhibited a robust T2 temperature dependence along all directions, whereas no simple power law could describe the temperature dependence of the longitudinal resistances. Remarkably, the degree of the carrier lifetime separation, as manifested in the distinctly different temperature dependences and diverging residuals near a critical quantum well thickness, was completely insensitive to disorder. The results allow for a clear distinction between disorder-induced contributions to the transport and intrinsic, non-Fermi liquid phenomena, which includes the lifetime separation.
Experimental results on the metal-insulator transition and related phenomena in strongly interacting two-dimensional electron systems are discussed. Special attention is given to recent results for the strongly enhanced spin susceptibility, effective mass, and thermopower in low-disordered silicon MOSFETs.
We report an universal behaviour of hopping transport in strongly interacting mesoscopic two-dimensional electron systems (2DES). In a certain window of background disorder, the resistivity at low perpendicular magnetic fields follows the expected re lation $rho(B_perp) = rho_{rm{B}}exp(alpha B_perp^2)$. The prefactor $rho_{rm{B}}$ decreases exponentially with increasing electron density but saturates to a finite value at higher densities. Strikingly, this value is found to be universal when expressed in terms of absolute resistance and and shows quantisation at $R_{rm{B}}approx h/e^2$ and $R_{rm{B}}approx 1/2$ $ h/e^2$. We suggest a strongly correlated electronic phase as a possible explanation.
We report electronic transport measurements on two-dimensional electron gases in a Ga[Al]As heterostructure with an embedded layer of InAs self-assembled quantum dots. At high InAs dot densities, pronounced Altshuler-Aronov-Spivak magnetoresistance o scillations are observed, which indicate short-range ordering of the potential landscape formed by the charged dots and the strain fields. The presence of these oscillations coincides with the observation of a metal-insulator transition, and a maximum in the electron mobility as a function of the electron density. Within a model based on correlated disorder, we establish a relation between these effects.
We develop a hydrodynamic description of the resistivity and magnetoresistance of an electron liquid in a smooth disorder potential. This approach is valid when the electron-electron scattering length is sufficiently short. In a broad range of temper atures, the dissipation is dominated by heat fluxes in the electron fluid, and the resistivity is inversely proportional to the thermal conductivity, $kappa$. This is in striking contrast with the Stokes flow, in which the resistance is independent of $kappa$ and proportional to the fluid viscosity. We also identify a new hydrodynamic mechanism of spin magnetoresistance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا