ترغب بنشر مسار تعليمي؟ اضغط هنا

Merging time-scales of stellar sub-clumps in young star-forming regions

134   0   0.0 ( 0 )
 نشر من قبل Michael Fellhauer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Fellhauer




اسأل ChatGPT حول البحث

Recent observations and hydrodynamical simulations of star formation inside a giant molecular cloud have revealed that, within a star forming region, stars do not form evenly distributed throughout this region, but rather in small sub-clumps. It is generally believed that these sub-clumps merge and form a young star cluster. The time-scale of this merging process is crucial for the evolution and the possible survival of the final star cluster. The key issue is whether this merging process happens faster than the time needed to remove the residual gas of the cloud. A merging time-scale shorter than the gas-removal time would enhance the survival chances of the resulting star cluster. In this paper we show by means of numerical simulations that the time-scale of the merging is indeed very fast. Depending on the details of the initial sub-clump distribution, the merging may occur before the gas is expelled from the newly-formed cluster either via supernovae or the winds from massive stars. Our simulations further show that the resulting merger-objects have a higher effective star formation efficiency than the overall star forming region and confirm the results that mass-segregated sub-clumps form mass-segregated merger-objects.



قيم البحث

اقرأ أيضاً

With the spatial resolution of the Atacama Large Millimetre Array (ALMA), dusty galaxies in the distant Universe typically appear as single, compact blobs of dust emission, with a median half-light radius, $approx$ 1 kpc. Occasionally, strong gravita tional lensing by foreground galaxies or galaxy clusters has probed spatial scales 1-2 orders of magnitude smaller, often revealing late-stage mergers, sometimes with tantalising hints of sub-structure. One lensed galaxy in particular, the Cosmic Eyelash at $z=$ 2.3, has been cited extensively as an example of where the interstellar medium exhibits obvious, pronounced clumps, on a spatial scale of $approx$ 100 pc. Seven orders of magnitude more luminous than giant molecular clouds in the local Universe, these features are presented as circumstantial evidence that the blue clumps observed in many $zsim$ 2-3 galaxies are important sites of ongoing star formation, with significant masses of gas and stars. Here, we present data from ALMA which reveal that the dust continuum of the Cosmic Eyelash is in fact smooth and can be reproduced using two Sersic profiles with effective radii, 1.2 and 4.4 kpc, with no evidence of significant star-forming clumps down to a spatial scale of $approx$ 80 pc and a star-formation rate of $<$ 3 M$_odot$ yr$^{-1}$.
We have conducted a search for ionized gas at 3.6 cm, using the Very Large Array, towards 31 Galactic intermediate- and high-mass clumps detected in previous millimeter continuum observations. In the 10 observed fields, 35 HII regions are identified, of which 20 are newly discovered. Many of the HII regions are multiply peaked indicating the presence of a cluster of massive stars. We find that the ionized gas tends to be associated towards the millimeter clumps; of the 31 millimeter clumps observed, 9 of these appear to be physically related to ionized gas, and a further 6 have ionized gas emission within 1. For clumps with associated ionized gas, the combined mass of the ionizing massive stars is compared to the clump masses to provide an estimate of the instantaneous star formation efficiency. These values range from a few percent to 25%, and have an average of 7 +/- 8%. We also find a correlation between the clump mass and the mass of the ionizing massive stars within it, which is consistent with a power law. This result is comparable to the prediction of star formation by competitive accretion that a power law relationship exists between the mass of the most massive star in a cluster and the total mass of the remaining stars.
We analyse stellar masses of clumps drawn from a compilation of star-forming galaxies at 1.1<z<3.6. Comparing clumps selected in different ways, and in lensed or blank field galaxies, we examine the effects of spatial resolution and sensitivity on th e inferred stellar masses. Large differences are found, with median stellar masses ranging from ~10^9 Msun for clumps in the often-referenced field galaxies to ~10^7 Msun for fainter clumps selected in deep-field or lensed galaxies. We argue that the clump masses, observed in non-lensed galaxies with a limited spatial resolution of ~1 kpc, are artificially increased due to the clustering of clumps of smaller mass. Furthermore, we show that the sensitivity threshold used for the clump selection affects the inferred masses even more strongly than resolution, biasing clumps at the low mass end. Both improved spatial resolution and sensitivity appear to shift the clump stellar mass distribution to lower masses, qualitatively in agreement with clump masses found in recent high-resolution simulations of disk fragmentation. We discuss the nature of the most massive clumps, and we conclude that it is currently not possible to properly establish a meaningful clump stellar mass distribution from observations and to infer the existence and value of a characteristic clump mass scale.
The fraction of star formation that results in bound star clusters is influenced by the density spectrum in which stars are formed and by the response of the stellar structure to gas expulsion. We analyse hydrodynamical simulations of turbulent fragm entation in star-forming regions to assess the dynamical properties of the resulting population of stars and (sub)clusters. Stellar subclusters are identified using a minimum spanning tree algorithm. When considering only the gravitational potential of the stars and ignoring the gas, we find that the identified subclusters are close to virial equilibrium (the typical virial ratio Q_vir~0.59, where virial equilibrium would be Q_vir~0.5). This virial state is a consequence of the low gas fractions within the subclusters, caused by the accretion of gas onto the stars and the accretion-induced shrinkage of the subclusters. Because the subclusters are gas-poor, up to a length scale of 0.1-0.2 pc at the end of the simulation, they are only weakly affected by gas expulsion. The fraction of subclusters that reaches the high density required to evolve to a gas-poor state increases with the density of the star-forming region. We extend this argument to star cluster scales, and suggest that the absence of gas indicates that the early disruption of star clusters due to gas expulsion (infant mortality) plays a smaller role than anticipated, and is potentially restricted to star-forming regions with low ambient gas densities. We propose that in dense star-forming regions, the tidal shocking of young star clusters by the surrounding gas clouds could be responsible for the early disruption. This `cruel cradle effect would work in addition to disruption by gas expulsion. We suggest possible methods to quantify the relative contributions of both mechanisms.
The article deals with observations of star-forming regions S231-S235 in quasi-thermal lines of ammonia (NH$_3$), cyanoacetylene (HC$_3$N) and maser lines of methanol (CH$_3$OH) and water vapor (H$_2$O). S231-S235 regions is situated in the giant mol ecular cloud G174+2.5. We selected all massive molecular clumps in G174+2.5 using archive CO data. For the each clump we determined mass, size and CO column density. After that we performed observations of these clumps. We report about first detections of NH$_3$ and HC$_3$N lines toward the molecular clumps WB89 673 and WB89 668. This means that high-density gas is present there. Physical parameters of molecular gas in the clumps were estimated using the data on ammonia emission. We found that the gas temperature and the hydrogen number density are in the ranges 16-30 K and 2.8-7.2$times10^3$ cm$^{-3}$, respectively. The shock-tracing line of CH$_3$OH molecule at 36.2 GHz is newly detected toward WB89 673.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا