ﻻ يوجد ملخص باللغة العربية
The Boltzmann factor comes from the linear change in entropy of an infinite heat bath during a local fluctuation; small systems have significant nonlinear terms. We present theoretical arguments, experimental data, and Monte-Carlo simulations indicating that nonlinear terms may also occur when a particle interacts directly with a finite number of neighboring particles, forming a local region that fluctuates independent of the infinite bath. A possible mechanism comes from the net force necessary to change the state of a particle while conserving local momentum. These finite-sized local regions yield nonlinear fluctuation constraints, beyond the Boltzmann factor. One such fluctuation constraint applied to simulations of the Ising model lowers the energy, makes the entropy extensive, and greatly improves agreement with the corrections to scaling measured in ferromagnetic materials and critical fluids.
We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. This model is based on a 16-discrete-velocity model. The collision step is first calculated in the moment space and then mapped
In metallic ferromagnets, the Berry curvature of underlying quasiparticles can cause an electric voltage perpendicular to both magnetization and an applied temperature gradient, a phenomenon called the anomalous Nernst effect (ANE). Here, we report t
We study the renormalization of a non-magnetic impuritys scattering potential due to the presence of a massless collective spin mode at a ferromagnetic quantum critical point. To this end, we compute the lowest order vertex corrections in two- and th
The theory of finite-size scaling explains how the singular behavior of thermodynamic quantities in the critical point of a phase transition emerges when the size of the system becomes infinite. Usually, this theory is presented in a phenomenological
Machine learning is becoming widely used in analyzing the thermodynamics of many-body condensed matter systems. Restricted Boltzmann Machine (RBM) aided Monte Carlo simulations have sparked interest recently, as they manage to speed up classical Mont