ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous lack of decoherence of the Macroscopic Quantum Superpositions based on phase-covariant Quantum Cloning

83   0   0.0 ( 0 )
 نشر من قبل Francesco de Martini
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that all Macroscopic Quantum Superpositions (MQS) based on phase-covariant quantum cloning are characterized by an anomalous high resilence to the de-coherence processes. The analysis supports the results of recent MQS experiments and leads to conceive a useful conjecture regarding the realization of complex decoherence - free structures for quantum information, such as the quantum computer.

قيم البحث

اقرأ أيضاً

139 - N. Spagnolo , F. Sciarrino , 2010
We show that the quantum states generated by universal optimal quantum cloning of a single photon represent an universal set of quantum superpositions resilient to decoherence. We adopt Bures distance as a tool to investigate the persistence ofquantu m coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.
130 - D. Spehner , F. Haake 2008
We study a class of quantum measurement models. A microscopic object is entangled with a macroscopic pointer such that a distinct pointer position is tied to each eigenvalue of the measured object observable. Those different pointer positions mutuall y decohere under the influence of an environment. Overcoming limitations of previous approaches we (i) cope with initial correlations between pointer and environment by considering them initially in a metastable local thermal equilibrium, (ii) allow for object-pointer entanglement and environment-induced decoherence of distinct pointer readouts to proceed simultaneously, such that mixtures of macroscopically distinct object-pointer product states arise without intervening macroscopic superpositions, and (iii) go beyond the Markovian treatment of decoherence.
The high resilience to de-coherence shown by a recently discovered Macroscopic Quantum Superposition (MQS) generated by a quantum injected optical parametric amplifier (QI-OPA) and involving a number of photons in excess of 5x10^4 motivates the prese nt theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on coherent states and NOON states, in the perspective of the comprehensive theory of the subject by W.H.Zurek. In that perspective the concepts of pointer state, einselection are applied to the new scheme.
We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, by using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored $1righ tarrow 2$ cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore prepare clones with no bias but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirror
We investigate the multiphoton states generated by high-gain optical parametric amplification of a single injected photon, polarization encoded as a qubit. The experiment configuration exploits the optimal phase-covariant cloning in the high gain reg ime. The interference fringe pattern showing the non local transfer of coherence between the injected qubit and the mesoscopic amplified output field involving up to 4000 photons has been investigated. A probabilistic new method to extract full information about the multiparticle output wavefunction has been implemented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا