ﻻ يوجد ملخص باللغة العربية
The phase-integral approximation devised by Froman and Froman, is used for computing cosmological perturbations in the quadratic chaotic inflationary model. The phase-integral formulas for the scalar and tensor power spectra are explicitly obtained up to fifth order of the phase-integral approximation. We show that, the phase integral gives a very good approximation for the shape of the power spectra associated with scalar and tensor perturbations as well as the spectral indices. We find that the accuracy of the phase-integral approximation compares favorably with the numerical results and those obtained using the slow-roll and uniform approximation methods.
The phase-integral approximation devised by Froman and Froman, is used for computing cosmological perturbations in the power-law inflationary model. The phase-integral formulas for the scalar and tensor power spectra are explicitly obtained up to nin
The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of quantum field models is investigated. Taking into account quantum corrections to the renormalization-group potent
Inflationary cosmology is the leading explanation of the very early universe. Many different models of inflation have been constructed which fit current observational data. In this work theoretical and numerical methods for constraining the parameter
We propose a mechanism of producing a new type of primordial perturbations that collapse to primordial black holes whose mass can be as large as necessary for them to grow to the supermassive black holes observed at high redshifts, without contradict
In this paper the scalar-tensor theory of gravity is assumed to describe the evolution of the universe and the gravitational scalar $phi$ is ascribed to play the role of inflaton. The theory is characterized by the specified coupling function $omega(