ترغب بنشر مسار تعليمي؟ اضغط هنا

Eccentricity fluctuation effects on elliptic flow in relativistic heavy ion collisions

76   0   0.0 ( 0 )
 نشر من قبل Tetsufumi Hirano
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study effects of eccentricity fluctuations on the elliptic flow coefficient v_2 at mid-rapidity in both Au+Au and Cu+Cu collisions at sqrt{s_NN}=200 GeV by using a hybrid model that combines ideal hydrodynamics for space-time evolution of the quark gluon plasma phase and a hadronic transport model for the hadronic matter. For initial conditions in hydrodynamic simulations, both the Glauber model and the color glass condensate model are employed to demonstrate the effect of initial eccentricity fluctuations originating from the nucleon position inside a colliding nucleus. The effect of eccentricity fluctuations is modest in semicentral Au+Au collisions, but significantly enhances v_2 in Cu+Cu collisions.

قيم البحث

اقرأ أيضاً

Transport and Langevin equations are employed to study hadronic medium effects on charmonium elliptic flows in heavy-ion collisions. In Pb-Pb collisions, the anisotropic energy density of the quark-gluon plasma (QGP) in the transverse plane is transf ormed into hadron momentum anisotropy after the phase transition. Charmonia with high transverse momentum $p_T$ are produced via the primordial hard process and undergo different degrees of dissociation along different paths in the QGP. They then scatter with light hadrons in the hadron phase. Both contributions to the charmonium elliptic flows are studied at moderate and high transverse momenta. The elliptic flows of the prompt $J/psi$ are found to be considerably enhanced at high transverse momentum when the charmonium diffusion coefficients in the hadronic medium are parametrized through the geometry scale approximation. This hadronic medium effect is negligible for quarkonia with larger mass such as bottomonia.
A systematic analysis of correlations between different orders of $p_T$-differential flow is presented, including mode coupling effects in flow vectors, correlations between flow angles (a.k.a. event-plane correlations), and correlations between flow magnitudes, all of which were previously studied with integrated flows. We find that the mode coupling effects among differential flows largely mirror those among the corresponding integrated flows, except at small transverse momenta where mode coupling contributions are small. For the fourth- and fifth-order flow vectors $V_4$ and $V_5$ we argue that the event plane correlations can be understood as the ratio between the mode coupling contributions to these flows and and the flow magnitudes. We also find that for $V_4$ and $V_5$ the linear response contribution scales linearly with the corresponding cumulant-defined eccentricities but not with the standard eccentricities.
86 - M.Di Toro , M.Colonna , G.Ferini 2007
We show that the phenomenology of isospin effects on heavy ion reactions at intermediate energies (few AGeV range) is extremely rich and can allow a ``direct study of the covariant structure of the isovector interaction in a high density hadron mediu m. We work within a relativistic transport frame, beyond a cascade picture, consistently derived from effective Lagrangians, where isospin effects are accounted for in the mean field and collision terms. We show that rather sensitive observables are provided by the pion/kaon production (pi^-/pi^+, K^0/K^+ yields). Relevant non-equilibrium effects are stressed. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected ``neutron trapping effect.
282 - Peng Yang , Lin Li , Yu Zhou 2021
Radial flow can be directly extracted from the azimuthal distribution of mean transverse rapidity. We apply the event-plane method and the two-particle correlation method to estimate the anisotropic Fourier coefficient of the azimuthal distribution o f mean transverse rapidity. Using the event sample generated by a multiphase transport model with string melting, we show that both methods are effective. For the two-particle correlation method to be reliable, the mean number of particles in an azimuthal bin must be above a certain threshold. Using these two methods, anisotropic radial flow can be estimated in a model-independent way in relativistic heavy-ion collisions.
72 - Jing Qian 2016
Higher-order anisotropic flows in heavy-ion collisions are affected by nonlinear mode coupling effects. It has been suggested that the associated nonlinear hydrodynamic response coefficients probe the transport properties and are largely insensitive to the spectrum of initial density fluctuations of the medium created in these collisions. To test this suggestion, we explore nonlinear mode coupling effects in event-by-event viscous fluid dynamics, using two different models for the fluctuating initial density profiles, and compare the nonlinear coupling coefficients between the initial eccentricity vectors before hydrodynamic expansion and the final flow vectors after the expansion. For several mode coupling coefficients we find significant sensitivity to the initial fluctuation spectrum. They all exhibit strong sensitivity to the specific shear viscosity at freeze-out, but only weak dependence on the shear viscosity during hydrodynamic evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا