ترغب بنشر مسار تعليمي؟ اضغط هنا

Information-theoretic corrections to black hole area quantisation?

59   0   0.0 ( 0 )
 نشر من قبل Rajesh R. Parwani
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rajesh R Parwani




اسأل ChatGPT حول البحث

Nonlinear corrections are proposed to the discrete equispaced area spectrum of quantum black holes obtained previously in some quantisation schemes. It is speculated that such a modified spectrum might be related to the fine structure found using the loop quantum gravity approach.

قيم البحث

اقرأ أيضاً

361 - Aharon Davidson 2019
We postulate a Planck scale horizon unit area, with no bits of information locally attached to it, connected but otherwise of free form, and let $n$ such geometric units compactly tile the black hole horizon. Associated with each topologically distin ct tiling configuration is then a simple, connected, undirected, unlabeled, planar, chordal graph. The asymptotic enumeration of the corresponding integer sequence gives rise to the Bekenstein-Hawking area entropy formula, automatically accompanied by a proper logarithmic term, and fixes the size of the horizon unit area, thereby constituting a global realization of Wheelers it from bit phrase. Invoking Polyas theorem, an exact number theoretical entropy spectrum is offered for the 2+1 dimensional quantum black hole.
We present observational confirmation of Hawkings black-hole area theorem based on data from GW150914, finding agreement with the prediction with 97% (95%) probability when we model the ringdown including (excluding) overtones of the quadrupolar mode . We obtain this result from a new time-domain analysis of the pre- and postmerger data. We also confirm that the inspiral and ringdown portions of the signal are consistent with the same remnant mass and spin, in agreement with general relativity.
An approach to black hole quantization is proposed wherein it is assumed that quantum coherence is preserved. A consequence of this is that the Penrose diagram describing gravitational collapse will show the same topological structure as flat Minkows ki space. After giving our motivations for such a quantization procedure we formulate the background field approximation, in which particles are divided into hard particles and soft particles. The background space-time metric depends both on the in-states and on the out-states. We present some model calculations and extensive discussions. In particular, we show, in the context of a toy model, that the $S$-matrix describing soft particles in the hard particle background of a collapsing star is unitary, nevertheless, the spectrum of particles is shown to be approximately thermal. We also conclude that there is an important topological constraint on functional integrals.
The black hole area theorem implies that when two black holes merge, the area of the final black hole should be greater than the sum of the areas of the two original black holes. We examine how this prediction can be tested with gravitational-wave ob servations of binary black holes. By separately fitting the early inspiral and final ringdown stages, we calculate the posterior distributions for the masses and spins of the two initial and the final black holes. This yields posterior distributions for the change in the area and thus a statistical test of the validity of the area increase law. We illustrate this method with a GW150914-like binary black hole waveform calculated using numerical relativity, and detector sensitivities representative of both the first observing run and the design configuration of Advanced LIGO. We obtain a $sim74.6%$ probability that the simulated signal is consistent with the area theorem with current sensitivity, improving to $sim99.9%$ when Advanced LIGO reaches design sensitivity. An important ingredient in our test is a method of estimating when the post-merger signal is well-fit by a damped sinusoid ringdown waveform.
The Renyi and Tsallis entropies are discussed as possible alternatives to the Bekenstein-Hawking area-law entropy. It is pointed out how replacing the entropy notion, but not the Hawking temperature and the thermodynamical energy may render the whole black hole thermodynamics inconsistent. The possibility to relate the Renyi and Tsallis entropies with the quantum gravity corrected Bekenstein-Hawking entropy is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا