ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transitions and He-synthesis driven winds in neutrino cooled accretion disks: prospects for late flares in short gamma-ray bursts

88   0   0.0 ( 0 )
 نشر من قبل William H. Lee
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the long term evolution of debris following the tidal disruption of compact stars in the context of short gamma ray bursts (SGRBs). The initial encounter impulsively creates a hot, dense, neutrino-cooled disk capable of powering the prompt emission. After a long delay, we find that powerful winds are launched from the surface of the disk, driven by the recombination of free nucleons into alpha particles. The associated energy release depletes the mass supply and eventually shuts off activity of the central engine. As a result, the luminosity and mass accretion rate deviate from the earlier self-similar behavior expected for an isolated ring with efficient cooling. This then enables a secondary episode of delayed activity to become prominent as an observable signature, when material in the tidal tails produced by the initial encounter returns to the vicinity of the central object. The time scale of the new accretion event can reach tens of seconds to minutes, depending on the details of the system. The associated energies and time scales are consistent with those occurring in X-ray flares.


قيم البحث

اقرأ أيضاً

We compute the average luminosity of X-ray flares as a function of time, for a sample of 10 long-duration gamma-ray burst afterglows. The mean luminosity, averaged over a timescale longer than the duration of the individual flares, declines as a powe r-law in time with index ~-1.5. We elaborate on the properties of the central engine that can produce such a decline. Assuming that the engine is an accreting compact object, and for a standard conversion factor between accretion rate and jet luminosity, the switch between a neutrino-cooled thin disk and a non-cooled thick disk takes place at the transition from the prompt to the flaring phase. We discuss the implications of this coincidence under different scenarios for the powering of the GRB outflow. We also show that the interaction of the outflow with the envelope of the progenitor star cannot produce flares out of a continuous relativistic flow, and conclude that it is the dynamics of the disk or the jet-launching mechanism that generates an intrinsically unsteady outflow on timescales much longer than the dynamical timescale of the system. This is consistent with the fact that X-ray flares are observed in short-duration GRBs as well as in long-duration ones.
110 - Oliver Just 2021
Black-hole (BH) accretion disks formed in compact-object mergers or collapsars may be major sites of the rapid-neutron-capture (r-)process, but the conditions determining the electron fraction (Y_e) remain uncertain given the complexity of neutrino t ransfer and angular-momentum transport. After discussing relevant weak-interaction regimes, we study the role of neutrino absorption for shaping Y_e using an extensive set of simulations performed with two-moment neutrino transport and again without neutrino absorption. We vary the torus mass, BH mass and spin, and examine the impact of rest-mass and weak-magnetism corrections in the neutrino rates. We also test the dependence on the angular-momentum transport treatment by comparing axisymmetric models using the standard alpha-viscosity with viscous models assuming constant viscous length scales (l_t) and three-dimensional magnetohydrodynamic (MHD) simulations. Finally, we discuss the nucleosynthesis yields and basic kilonova properties. We find that absorption pushes Y_e towards ~0.5 outside the torus, while inside increasing the equilibrium value Y_e^eq by ~0.05--0.2. Correspondingly, a substantial ejecta fraction is pushed above Y_e=0.25, leading to a reduced lanthanide fraction and a brighter, earlier, and bluer kilonova than without absorption. More compact tori with higher neutrino optical depth, tau, tend to have lower Y_e^eq up to tau~1-10, above which absorption becomes strong enough to reverse this trend. Disk ejecta are less (more) neutron-rich when employing an l_t=const. viscosity (MHD treatment). The solar-like abundance pattern found for our MHD model marginally supports collapsar disks as major r-process sites, although a strong r-process may be limited to phases of high mass-infall rates, Mdot>~ 2 x 10^(-2) Msun/s.
115 - W. H. Lei , D. X. Wang , L. Zhang 2009
Recent observations and theoretical work on gamma-ray bursts (GRBs) favor the central engine model of a Kerr black hole (BH) surrounded by a magnetized neutrino-dominated accretion flow (NDAF). The magnetic coupling between the BH and disk through a large-scale closed magnetic field exerts a torque on the disk, and transports the rotational energy from the BH to the disk. We investigate the properties of the NDAF with this magnetic torque. For a rapid spinning BH, the magnetic torque transfers enormous rotational energy from BH into the inner disk. There are two consequences: (i) the luminosity of neutrino annihilation is greatly augmented; (ii) the disk becomes thermally and viscously unstable in the inner region, and behaves S-Shape of the surface density versus accretion rate. It turns out that magnetically torqued NDAF can be invoked to interpret the variability of gamma-ray luminosity. In addition, we discuss the possibility of restarting the central engine to produce the X-ray flares with required energy.
We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emiss ion (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of ~ 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (~ 6 x 10^-10 erg cm^-2 s^-1) is ~> 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (~ 60,000 s) is ~ 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.
Both long-duration gamma-ray bursts (LGRBs) from core collapse of massive stars and short-duration GRBs (SGRBs) from mergers of binary neutron star (BNS) or neutron star--black hole (NSBH) are expected to occur in the accretion disk of active galacti c nuclei (AGNs). We show that GRB jets embedded in the migration traps of AGN disks are promised to be choked by the dense disk material. Efficient shock acceleration of cosmic rays at the reverse shock is expected, and high-energy neutrinos would be produced. We find that these sources can effectively produce detectable TeV--PeV neutrinos through $pgamma$ interactions. From a choked LGRB jet with isotropic equivalent energy of $10^{53},{rm erg}$ at $100,{rm Mpc}$, one expects $sim2,(7)$ neutrino events detectable by IceCube (IceCube-Gen2). The contribution from choked LGRBs to the observed diffuse neutrino background depends on the unknown local event rate density of these GRBs in AGN disks. For example, if the local event rate density of choked LGRBs in AGN disk is $sim5%$ that of low-luminosity GRBs $(sim10,{rm Gpc}^{-3},{rm yr}^{-1})$, the neutrinos from these events would contribute to $sim10%$ of the observed diffuse neutrino background. Choked SGRBs in AGN disks are potential sources for future joint electromagnetic, neutrino, and gravitational wave multi-messenger observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا