ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution and Structure of Matter in and around Galaxies

43   0   0.0 ( 0 )
 نشر من قبل Norbert S. Schulz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the origins and distribution of matter in the Universe is one of the most important quests in physics and astronomy. Themes range from astro-particle physics to chemical evolution in the Galaxy to cosmic nucleosynthesis and chemistry in an anticipation of a full account of matter in the Universe. Studies of chemical evolution in the early Universe will answer questions about when and where the majority of metals were formed, how they spread and why they appar today as they are. The evolution of matter in our Universe cannot be characterized as a simple path of development. In fact the state of matter today tells us that mass and matter is under constant reformation through on-going star formation, nucleosynthesis and mass loss on stellar and galactic scales. X-ray absorption studies have evolved in recent years into powerful means to probe the various phases of interstellar and intergalactic media. Future observatories such as IXO and Gen-X will provide vast new opportunities to study structure and distribution of matter with high resolution X-ray spectra. Specifically the capabilities of the soft energy gratings with a resolution of R=3000 onboard IXO will provide ground breaking determinations of element abundance, ionization structure, and dispersion velocities of the interstellar and intergalactic media of our Galaxy and the Local Group

قيم البحث

اقرأ أيضاً

Among the most stringent constraints on the dark matter annihilation cross section are those derived from observations of dwarf galaxies by the Fermi Gamma-Ray Space Telescope. As current (e.g., Dark Energy Survey, DES) and future (Large Synoptic Sur vey Telescope, LSST) optical imaging surveys discover more of the Milky Ways ultra-faint satellite galaxies, they may increase Fermis sensitivity to dark matter annihilations. In this study, we use a semi-analytic model of the Milky Ways satellite population to predict the characteristics of the dwarfs likely to be discovered by DES and LSST, and project how these discoveries will impact Fermis sensitivity to dark matter. While we find that modest improvements are likely, the dwarf galaxies discovered by DES and LSST are unlikely to increase Fermis sensitivity by more than a factor of ~2-4. However, this outlook may be conservative, given that our model underpredicts the number of ultra-faint galaxies with large potential annihilation signals actually discovered in the Sloan Digital Sky Survey. Our simulation-based approach focusing on the Milky Way satellite population demographics complements existing empirically-based estimates.
We provide CTA sensitivities to Dark Matter (DM) annihilation in $gamma$-ray lines, from the observation of the Galactic Center (GC) as well as, for the first time, of dwarf Spheroidal galaxies (dSphs). We compare the GC reach with that of dSphs as a function of a putative core radius of the DM distribution, which is itself poorly known. We find that the currently best dSph candidates constitute a more promising target than the GC, for core radii of one to a few kpc. We use the most recent instrument response functions and background estimations by CTA, on top of which we add the diffuse photon component. Our analysis is of particular interest for TeV-scale electroweak multiplets as DM candidates, such as the supersymmetric Wino and the Minimal Dark Matter fiveplet, whose predictions we compare with our projected sensitivities.
294 - Pankaj Kushwaha 2017
We present a statistical characterization of the $gamma$-ray emission from the four emph{Fermi}-LAT sources: FR I radio galaxy NGC 1275, BL Lac Mrk 421, FSRQs B2 1520+31 and PKS 1510-089 detected almost continuously over a time integration of 3-days between August 2008 - October 2015. The observed flux variation is large, spanning $gtrsim 2$ orders of magnitude between the extremes except for Mrk~421. We compute the flux distributions and compare with Gaussian and lognormal ones. We find that the 3 blazars have distribution consistent with a lognormal, suggesting that the variability is of a non-linear, multiplicative nature. This is further supported by the computation of the flux-rms relation, which is observed to be linear for the 3 blazars. However, for NGC 1275, the distribution does not seem to be represented either by a lognormal or a Gaussian, while its flux-rms relation is still found to be linear. We also compute the power spectra, which suggest the presence of a break, but are consistent with typical scale-free power-law shot noise. The results are broadly consistent with the statistical properties of the magnetic reconnection powered minijets-in-a-jet model. We discuss other possible scenarios and implications of these observations on jet processes and connections with the central engine.
138 - E. Athanassoula 2013
`Conspiracy between the dark and the baryonic mater prohibits an unambiguous decomposition of disc galaxy rotation curves into the corresponding components. Several methods have been proposed to counter this difficulty, but their results are widely d iscrepant. In this paper, I revisit one of these methods, which relies on the relation between the halo density and the decrease of the bar pattern speed. The latter is routinely characterised by the ratio ${cal R}$ of the corotation radius $R_{CR}$ to the bar length $L_b$, ${cal R}=R_{CR}/L_b$. I use a set of $N$-body+SPH simulations, including sub-grid physics, whose initial conditions cover a range of gas fractions and halo shapes. The models, by construction, have roughly the same azimuthally averaged circular velocity curve and halo density and they are all submaximal, i.e. according to previous works they are expected to have all roughly the same ${cal R}$ value, well outside the fast bar range (1.2 $pm$ 0.2). Contrary to these expectations, however, these simulations end up having widely different ${cal R}$ values, either within the fast bar range, or well outside it. This shows that the ${cal R}$ value can not constrain the halo density, nor determine whether galactic discs are maximal or submaximal. I argue that this is true even for early type discs (S0s and Sas).
The spectrum of the supernova relic neutrino (SRN) background from past stellar collapses including black hole formation (failed supernovae) is calculated. The redshift dependence of the black hole formation rate is considered on the basis of the met allicity evolution of galaxies. Assuming the mass and metallicity ranges of failed supernova progenitors, their contribution to SRNs is quantitatively estimated for the first time. Using this model, the dependences of SRNs on the cosmic star formation rate density, shock revival time and equation of state are investigated. The shock revival time is introduced as a parameter that should depend on the still unknown explosion mechanism of core collapse supernovae. The dependence on equation of state is considered for failed supernovae, whose collapse dynamics and neutrino emission are certainly affected. It is found that the low-energy spectrum of SRNs is mainly determined by the cosmic star formation rate density. These low-energy events will be observed in the Super-Kamiokande experiment with gadolinium-loaded water.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا