ﻻ يوجد ملخص باللغة العربية
We develop a new Bayesian method for estimating white noise levels in CMB sky maps, and apply this algorithm to the 5-year WMAP data. We assume that the amplitude of the noise RMS is scaled by a constant value, alpha, relative to a pre-specified noise level. We then derive the corresponding conditional density, P(alpha | s, Cl, d), which is subsequently integrated into a general CMB Gibbs sampler. We first verify our code by analyzing simulated data sets, and then apply the framework to the WMAP data. For the foreground-reduced 5-year WMAP sky maps and the nominal noise levels initially provided in the 5-year data release, we find that the posterior means typically range between alpha=1.005 +- 0.001 and alpha=1.010 +- 0.001 depending on differencing assembly, indicating that the noise level of these maps are biased low by 0.5-1.0%. The same problem is not observed for the uncorrected WMAP sky maps. After the preprint version of this letter appeared on astro-ph., the WMAP team has corrected the values presented on their web page, noting that the initially provided values were in fact estimates from the 3-year data release, not from the 5-year estimates. However, internally in their 5-year analysis the correct noise values were used, and no cosmological results are therefore compromised by this error. Thus, our method has already been demonstrated in practice to be both useful and accurate.
A well-tested and validated Gibbs sampling code, that performs component separation and CMB power spectrum estimation, was applied to the {it WMAP} 5-yr data. Using a simple model consisting of CMB, noise, monopoles and dipoles, a ``per pixel low-fre
We constrain the amplitude of primordial non-Gaussianity in the CMB data taking into account the presence of foreground residuals in the maps. We generalise the needlet bispectrum estimator marginalizing over the amplitudes of thermal dust, free-free
We present skeleton studies of non-Gaussianity in the CMB temperature anisotropy observed in the WMAP5 data. The local skeleton is traced on the 2D sphere by cubic spline interpolation which leads to more accurate estimation of the intersection posit
We analyse WMAP 7-year temperature data, jointly modeling the cosmic microwave background (CMB) and Galactic foreground emission. We use the Commander code based on Gibbs sampling. Thus, from the WMAP7 data, we derive simultaneously the CMB and Galac
We present an analysis of the foreground emission present in the WMAP 3-year data as determined by the method of Independent Component Analysis. We derived coupling coefficients between the WMAP data and foreground templates which are then used to in