ترغب بنشر مسار تعليمي؟ اضغط هنا

A phenomenological model of the muon density profile on the ground of very inclined air showers

76   0   0.0 ( 0 )
 نشر من قبل Hans Dembinski
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-high energy cosmic rays generate extensive air showers in Earths atmosphere. A standard approach to reconstruct the energy of an ultra-high energy cosmic rays is to sample the lateral profile of the particle density on the ground of the air shower with an array of surface detectors. For cosmic rays with large inclinations, this reconstruction is based on a model of the lateral profile of the muon density observed on the ground, which is fitted to the observed muon densities in individual surface detectors. The best models for this task are derived from detailed Monte-Carlo simulations of the air shower development. We present a phenomenological parametrization scheme which allows to derive a model of the average lateral profile of the muon density directly from a fit to a set of individual Monte-Carlo simulated air showers. The model reproduces the detailed simulations with a high precision. As an example, we generate a muon density model which is valid in the energy range 1e18 eV < E < 1e20 eV and the zenith angle range 60 deg < theta < 90 deg. We will further demonstrate a way to speed up the simulation of such muon profiles by three orders of magnitude, if only the muons in the shower are of interest.

قيم البحث

اقرأ أيضاً

Radio detection of inclined air showers currently receives special attention. It can be performed with very sparse antenna arrays and yields a pure measurement of the electromagnetic air-shower component, thus delivering information that is highly co mplementary to the measurement of the muonic component using particle detectors. However, radio-based reconstruction of inclined air showers is challenging in light of asymmetries induced in the radio-signal distribution by early-late effects as well as the superposition of geomagnetic and charge-excess radiation. We present a model for the signal distribution of radio emission from inclined air showers which allows explicit compensation of these asymmetries. In a first step, geometrical early-late asymmetries are removed. Secondly, a universal parameterization of the charge-excess fraction as a function of the air-shower geometry, the atmospheric density profile and the lateral distance from the shower axis is used to compensate for the charge-excess contribution to the signal. The resulting signal distribution of the pure geomagnetic emission is then fit with a rotationally symmetric lateral distribution function, the area integration of which yields the radiation energy as an estimator for the cosmic-ray energy. We present the details and performance of our model, which lays the foundation for robust and precise reconstruction of inclined air showers from radio measurements.
The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50$^circ$. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers.
With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60$^circ$ and 84$^circ$. In contrast to air showers with more vertical incide nce, these inclined air showers illuminate large ground areas of several km$^2$ with radio signals detectable in the 30 to 80,MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or scattering in the atmosphere, the area illuminated by radio signals grows with the zenith angle of the air shower. Inclined air showers with EeV energies are thus measurable with sparse radio-antenna arrays with grid sizes of a km or more. This is particularly attractive as radio detection provides direct access to the energy in the electromagnetic cascade of an air shower, which in case of inclined air showers is not accessible by arrays of particle detectors on the ground.
Radio detection of inclined air showers is currently receiving great attention. To exploit the potential, a suitable event reconstruction needs to be developed. The first step in this direction is the development of a model for the lateral distributi on of the radio signals, which in the case of inclined air showers exhibits asymmetries due to early-late effects in addition to the usual asymmetries from the superposition of charge-excess and geomagnetic emission. We present a model which corrects for all asymmetries and successfully describes the lateral distribution of the energy fluence with a rotationally symmetric function. This gives access to the radiation energy as a measure of the energy of the cosmic-ray primary, and is also sensitive to the depth of the shower maximum.
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon densi ty distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا