ترغب بنشر مسار تعليمي؟ اضغط هنا

New insights on the binary asteroid 121 Hermione

143   0   0.0 ( 0 )
 نشر من قبل Franck Marchis
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the results of a six-month photometric study of the main-belt binary C-type asteroid 121 Hermione, performed during its 2007 opposition. We took advantage of the rare observational opportunity afforded by one of the annual equinoxes of Hermione occurring close to its opposition in June 2007. The equinox provides an edge-on aspect for an Earth-based observer, which is well suited to a thorough study of Hermiones physical characteristics. The catalog of observations carried out with small telescopes is presented in this work, together with new adaptive optics (AO) imaging obtained between 2005 and 2008 with the Yepun 8-m VLT telescope and the 10-m Keck telescope. The most striking result is confirmation that Hermione is a bifurcated and elongated body, as suggested by Marchis et al., (2005). A new effective diameter of 187 +/- 6 km was calculated from the combination of AO, photometric and thermal observations. The new diameter is some 10% smaller than the hitherto accepted radiometric diameter based on IRAS data. The reason for the discrepancy is that IRAS viewed the system almost pole-on. New thermal observations with the Spitzer Space Telescope agree with the diameter derived from AO and lightcurve observations. On the basis of the new AO astrometric observations of the small 32-km diameter satellite we have refined the orbit solution and derived a new value of the bulk density of Hermione of 1.4 +0.5/-0.2 g cm-3. We infer a macroscopic porosity of ~33 +5/-20%.



قيم البحث

اقرأ أيضاً

We present the results of the study of the close binary UU Cassiopeiae based on previously published multi wavelength photometric and spectroscopic data. Based on eclipse timings of the last 117 years, we find an improved orbital period of $rm P_{o} = 8.519296(8)$ d. In addition, we find a long cycle of length $T$ $sim$ 270 d in the $I_c$-band data. There is no evidence for orbital period change during the last century, suggesting that the rate of mass loss from the system or mass exchange between the stars should be small. Sporadic and rapid brightness drops of up to $Delta$$V$ = 0.3 mag are detected during the whole orbital cycle and infrared photometry clearly suggests the presence of circumstellar matter. We model the orbital light curve of 11 published datasets fixing the mass ratio and cool star temperature from previous spectroscopic work; $q$= 0.52 and $T_c$= 22 700 K. We find a system seen at angle 74 degrees with a stellar separation of 52 ${rm R_{odot}}$, a temperature for the hotter star $T_h$= 30 200 $K$ and stellar masses 17.4 and 9 ${rm M_{odot}}$ , radii 7.0 and 16.9 ${rm R_{odot}}$ and surface gravities log g = 3.98 and 2.94, for the hotter and cooler star, respectively. We find an accretion disk surrounding the more massive star, with a radius of 21 ${rm R_{odot}}$ and vertical thickness in its outer edge of 6.5 ${rm R_{odot}}$, mostly occulting the hotter star. Two active regions hotter than the surrounding disk are found, one located roughly in the expected position where the stream impacts the disk and the other one in the opposite side of the disk. Changes are observed in parameters of the disk and spots in different datasets.
In understanding the composition and internal structure of asteroids, their density is perhaps the most diagnostic quantity. We aim here to characterize the surface composition, mutual orbit, size, mass, and density of the small main-belt binary aste roid (939) Isberga. For that, we conduct a suite of multi-technique observations, including optical lightcurves over many epochs, near-infrared spectroscopy, and interferometry in the thermal infrared. We develop a simple geometric model of binary systems to analyze the interferometric data in combination with the results of the lightcurve modeling. From spectroscopy, we classify Ibserga as a Sq-type asteroid, consistent with the albedo of 0.14$^{+0.09}_{-0.06}$ (all uncertainties are reported as 3-$sigma$ range) we determine (average albedo of S-types is 0.197 $pm$ 0.153, Pravec et al., 2012, Icarus 221, 365-387). Lightcurve analysis reveals that the mutual orbit has a period of 26.6304 $pm$ 0.0001 h, is close to circular, and has pole coordinates within 7 deg. of (225, +86) in ECJ2000, implying a low obliquity of 1.5 deg. The combined analysis of lightcurves and interferometric data allows us to determine the dimension of the system and we find volume-equivalent diameters of 12.4$^{+2.5}_{-1.2}$ km and 3.6$^{+0.7}_{-0.3}$ km for Isberga and its satellite, circling each other on a 33 km wide orbit. Their density is assumed equal and found to be $2.91^{+1.72}_{-2.01}$ g.cm$^{-3}$, lower than that of the associated ordinary chondrite meteorites, suggesting the presence of some macroporosity, but typical of S-types of the same size range (Carry, 2012, P&SS 73, 98-118). The present study is the first direct measurement of the size of a small main-belt binary. Although the interferometric observations of Isberga are at the edge of MIDI capabilities, the method described here is applicable to others suites of instruments (e.g, LBT, ALMA).
In this work, we investigate the rotational dynamics of the ginger-shaped near-Earth asteroid 4179 Toutatis, which was closely observed by Change-2 at a distance of $770pm120~$ meters from the asteroids surface during the outbound flyby citep{Huang20 13} on 13 December 2012. A sequence of high-resolution images was acquired during the flyby mission. In combination with ground-based radar observations collected over the last two decades, we analyze these flyby images and determine the orientation of the asteroid at the flyby epoch. The 3-1-3 Euler angles of the conversion matrix from the J2000 ecliptic coordinate system to the body-fixed frame are evaluated to be $-20.1^circpm1^circ$, $27.6^circpm1^circ$ and $42.2^circpm1^circ$, respectively. The least-squares method is utilized to determine the rotational parameters and spin state of Toutatis. The characteristics of the spin-state parameters and angular momentum variations are extensively studied using numerical simulations, which confirm those reported by citet{Takahashi2013}. The large amplitude of Toutatis precession is assumed to be responsible for its tumbling attitude as observed from Earth. Toutatis angular momentum orientation is determined to be described by $lambda_{H}=180.2^{+0.2^circ}_{-0.3^circ}$ and $beta_{H}=-54.75^{+0.15^circ}_{-0.10^circ}$, implying that it has remained nearly unchanged for two decades. Furthermore, using Fourier analysis to explore the change in the orientation of Toutatis axes, we reveal that the two rotational periods are 5.38 and 7.40 days, respectively, consistent with the results of the former investigation. Hence, our investigation provides a clear understanding of the state of the rotational dynamics of Toutatis.
98 - Man-To Hui , Yoonyoung Kim , 2019
Main-belt asteroid (6478) Gault was observed to show cometary features in early 2019. To investigate the cause, we conducted {it BVR} observations at Xingming Observatory, China, from 2019 January to April. The two tails were formed around 2018 Octob er 26--November 08, and 2018 December 29--2019 January 08, respectively, and consisted of dust grains of $gtrsim$20 $mu$m to 3 mm in radius ejected at a speed of $0.15 pm 0.05$ m s$^{-1}$ and following a broken power-law size distribution bending at grain radius $sim$70 $mu$m (bulk density 1 g cm$^{-3}$ assumed). The total mass of dust within a $10^4$ km-radius aperture around Gault declined from $sim$$9 times 10^6$ kg since 2019 January at a rate of $2.28 pm 0.07$ kg s$^{-1}$, but temporarily surged around 2019 March 25, because Earth thence crossed the orbital plane of Gault, within which the ejected dust was mainly distributed. No statistically significant colour or short-term lightcurve variation was seen. Nonetheless we argue that Gault is currently subjected to rotational instability. Using the available astrometry, we did not detect any nongravitational acceleration in the orbital motion of Gault.
As astronomical photometric surveys continue to tile the sky repeatedly, the potential to pushdetection thresholds to fainter limits increases; however, traditional digital-tracking methods cannotachieve this efficiently beyond time scales where moti on is approximately linear. In this paper weprototype an optimal detection scheme that samples under a user defined prior on a parameterizationof the motion space, maps these sampled trajectories to the data space, and computes an optimalsignal-matched filter for computing the signal to noise ratio of trial trajectories. We demonstrate thecapability of this method on a small test data set from the Dark Energy Camera. We recover themajority of asteroids expected to appear and also discover hundreds of new asteroids with only a fewhours of observations. We conclude by exploring the potential for extending this scheme to larger datasets that cover larger areas of the sky over longer time baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا