ترغب بنشر مسار تعليمي؟ اضغط هنا

A Systematic Study of the Stellar Populations and ISM in Galaxies out to the Virgo Cluster

66   0   0.0 ( 0 )
 نشر من قبل Rolf Jansen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rolf A. Jansen




اسأل ChatGPT حول البحث

No English abstract

قيم البحث

اقرأ أيضاً

We use a combination of deep optical and near-infrared light profiles for a morphologically diverse sample of Virgo cluster galaxies to study the radially-resolved stellar populations of cluster galaxies over a wide range of galaxy structure. We find that, in the median, the age gradients of Virgo galaxies are either flat (lenticulars and Sa-Sb spirals) or positive (ellipticals, Sbc+Sc spirals, gas-rich dwarfs, and irregulars), while all galaxy types have a negative median metallicity gradient. Comparison of the galaxy stellar population diagnostics (age, metallicity, and gradients thereof) against structural and environmental parameters also reveals that the ages of gas-rich systems depend mainly on their atomic gas deficiencies. Conversely, the metallicities of Virgo gas-poor galaxies depend on their concentrations, luminosities, and surface brightnesses. The stellar population gradients of all Virgo galaxies exhibit no dependence on either their structure or environment. We interpret these stellar population data for Virgo galaxies in the context of popular formation and evolution scenarios, and suggest that gas-poor giants grew hierarchically (through dissipative starbursts), gas-poor dwarfs have descended from at least two different production channels (e.g., environmental transformation and merging), while spirals formed inside-out, but with star formation in the outskirts of a significant fraction of the population having been quenched due to ram pressure stripping. (Abridged)
We present stellar age profiles for 64 Virgo cluster disk galaxies whose analysis poses a challenge for current galaxy formation models. Our results can be summarized as follows: first, and contrary to observations of field galaxies, these cluster ga laxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically-significant
[Abridged] Using VLT/FORS2 spectroscopy, we have studied the properties of the central stellar populations of a sample of 38 nucleated early-type dwarf (dE) galaxies in the Virgo Cluster. We find that these galaxies do not exhibit the same average st ellar population characteristics for different morphological subclasses. The nucleated galaxies without discs are older and more metal poor than the dEs with discs . The alpha-element abundance ratio appears consistent with the solar value for both morphological types. Besides a well-defined relation of metallicity and luminosity, we also find a clear anti-correlation between age and luminosity. More specifically, there appears to be a bimodality: brighter galaxies, including the discy ones, exhibit significantly younger ages than fainter dEs. Therefore, it appears less likely that fainter and brighter dEs have experienced the same evolutionary history, as the well-established trend of decreasing average stellar age when going from the most luminous ellipticals towards low-luminosity Es and bright dEs is broken here. The older and more metal-poor dEs could have had an early termination of star formation activity, possibly being primordial galaxies in the sense that they have formed along with the protocluster or experienced very early infall. By contrast, the younger and relatively metal-rich brighter dEs, most of which have discs, might have undergone structural transformation of infalling disc galaxies.
This paper is part of a series devoted to the study of the stellar populations in brightest cluster galaxies (BCGs), aimed at setting constraints on the formation and evolution of these objects. We have obtained high signal-to-noise ratio, long-slit spectra of 49 BCGs in the nearby Universe. Here, we derive Single Stellar Population (SSP)-equivalent ages, metallicities and alpha-abundance ratios in the centres of the galaxies using the Lick/IDS system of absorption line indices. We systematically compare the indices and derived parameters for the BCGs with those of large samples of ordinary elliptical galaxies in the same mass range. We find no significant differences between the index-velocity dispersion relations of the BCG data and those of normal ellipticals, but we do find subtle differences between the derived SSP-parameters. The BCGs show, on average, higher metallicity ([Z/H]) and alpha-abundance ([E/Fe]) values. We analyse possible correlations between the derived parameters and the internal properties of the galaxies (velocity dispersion, rotation, luminosity) and those of the host clusters (density, mass, distance from BCG to X-ray peak, presence of cooling flows), with the aim of dissentangling if the BCG properties are more influenced by their internal or host cluster properties. The SSP-parameters show very little dependence on the mass or luminosity of the galaxies, or the mass or density of the host clusters. Of this sample, 26 per cent show luminosity-weighted ages younger than 6 Gyr, probably a consequence of recent - if small - episodes of star formation. In agreement with previous studies, the BCGs with intermediate ages tend to be found in cooling-flow clusters with large X-ray excess.
We have carried out a search for substructure within the globular cluster systems of M84 (NGC 4374) and M86 (NGC 4406), two giant elliptical galaxies in the Virgo Cluster. We use wide-field (36 arcmin x 36 arcmin), multi-color broadband imaging to id entify globular cluster candidates in these two galaxies as well as several other nearby lower-mass galaxies. Our analysis of the spatial locations of the globular cluster candidates reveals several substructures, including: a peak in the projected number density of globular clusters in M86 that is offset from the system center and may be at least partly due to the presence of the dwarf elliptical galaxy NGC 4406B; a bridge that connects the M84 and M86 globular cluster systems; and a boxy iso-density contour along the southeast side of the M86 globular cluster system. We divide our sample into red (metal-rich) and blue (metal-poor) globular cluster candidates to look for differences in the spatial distributions of the two populations and find that the blue cluster candidates are the dominant population in each of the substructures we identify. We also incorporate the measurements from two radial velocity surveys of the globular clusters in the region and find that the bridge substructure is populated by globular clusters with a mix of velocities that are consistent with either M86 and M84, possibly providing further evidence for interaction signatures between the two galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا