ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiclassical theory of the photogalvanic effect in non-centrosymmetric systems

152   0   0.0 ( 0 )
 نشر من قبل Leonid E. Golub
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a semiclassical theory of nonlinear transport and the photogalvanic effect in non-centrosymmetric media. We show that terms in semiclassical kinetic equations for electron motion which are associated with the Berry curvature and side jumps give rise to a dc current quadratic in the amplitude of the ac electric field. We demonstrate that the circular photogalvanic effect is governed by these terms in contrast to the linear photogalvanic effect and nonlinear I-V characteristics which are governed mainly by the skew scattering mechanism. In addition, the Berry curvature contribution to the magnetic-field induced photogalvanic effect is calculated.

قيم البحث

اقرأ أيضاً

234 - L. E. Golub , E. L. Ivchenko , 2020
We develop a theory of circular photogalvanic effect (CPGE) for classically high photon energies which exceed the electron scattering rate but are small compared to the average electron kinetic energy. In this frequency range one can calculate the CP GE by using two different approaches. In the fully quantum-mechanical approach we find the photocurrent density by applying Fermis golden rule for indirect intraband optical transitions with virtual intermediate states both in the conduction and valence bands. In the framework of the semiclassical approach, we apply a generalized Boltzmann equation with accounts for the Berry-curvature induced anomalous velocity, side jumps and skew scattering. The calculation is carried out for a wurtzite symmetry crystal. Both methods yield the same results for the CPGE current demonstrating consistency between the two approaches and applicability of the semiclassical theory for the description of nonlinear high-frequency transport.
The nonlinear Hall effect is an unconventional response, in which a voltage can be driven by two perpendicular currents in the Hall-bar measurement. Unprecedented in the family of the Hall effects, it can survive time-reversal symmetry but is sensiti ve to the breaking of discrete and crystal symmetries. It is a quantum transport phenomenon that has deep connection with the Berry curvature. However, a full quantum description is still absent. Here we construct a quantum theory of the nonlinear Hall effect by using the diagrammatic technique. Quite different from nonlinear optics, nearly all the diagrams account for the disorder effects, which play decisive role in the electronic transport. After including the disorder contributions in terms of the Feynman diagrams, the total nonlinear Hall conductivity is enhanced but its sign remains unchanged for the 2D tilted Dirac model, compared to the one with only the Berry curvature contribution. We discuss the symmetry of the nonlinear conductivity tensor and predict a pure disorder-induced nonlinear Hall effect for point groups $C_{3}$, $C_{3h}$, $C_{3v}$, $D_{3h}$, $D_{3}$ in 2D, and $T$, $T_{d}$, $C_{3h}$, $D_{3h}$ in 3D. This work will be helpful for explorations of the topological physics beyond the linear regime.
We have studied the circular photogalvanic effect (CPGE) in Cu/Bi bilayers. When a circularly polarized light in the visible range is irradiated to the bilayer from an oblique incidence, we find a photocurrent that depends on the helicity of light. S uch photocurrent appears in a direction perpendicular to the light plane of incidence but is absent in the parallel configuration. The helicity dependent photocurrent is significantly reduced for a Bi single layer film and the effect is nearly absent for a Cu single layer film. Conventional interpretation of the CPGE suggests the existence of spin-momentum locked band(s) of a Rashba type in the Cu/Bi bilayer. In contrast to previous reports on the CPGE studied in other systems, however, the light energy used here to excite the carriers is much larger than the band gap of Bi. Moreover, the CPGE of the Cu/Bi bilayer is larger when the energy of the light is larger: the helicity dependent photocurrent excited with a blue light is nearly two times larger than that of a red light. We therefore consider the CPGE of the Cu/Bi bilayer may have a different origin compared to conventional systems.
Recent experiment [S.I. Dorozhkin et al., Phys. Rev. Lett. 102, 036602 (2009)] on quantum Hall structures with strongly asymmetric contact configuration discovered microwave-induced photocurrent and photovoltage magnetooscillations in the absence of dc driving. We show that in an irradiated sample the Landau quantization leads to violation of the Einstein relation between the dc conductivity and diffusion coefficient. Then, in the presence of a built-in electric field in a sample, the microwave illumination causes photo-galvanic signals which oscillate as a function of magnetic field with the period determined by the ratio of the microwave frequency to the cyclotron frequency, as observed in the experiment.
Far from being limited to a trivial generalization of their Hermitian counterparts, non-Hermitian topological phases have gained widespread interest due to their unique properties. One of the most striking non-Hermitian phenomena is the skin effect, i.e., the localization of a macroscopic fraction of bulk eigenstates at a boundary, which underlies the breakdown of the bulk-edge correspondence. Here we investigate the emergence of the skin effect in magnetic insulating systems by developing a phenomenological approach to describing magnetic dissipation within a lattice model. Focusing on a spin-orbit-coupled van der Waals (vdW) ferromagnet with spin-nonconserving magnon-phonon interactions, we find that the magnetic skin effect emerges in an appropriate temperature regime. Our results suggest that the interference between Dzyaloshinskii-Moriya interaction (DMI) and nonlocal magnetic dissipation plays a key role in the accumulation of bulk states at the boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا