ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital-dependent modifications of electronic structure across magneto-structural transition in BaFe2As2

72   0   0.0 ( 0 )
 نشر من قبل Takahiro Shimojima
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laser angle-resolved photoemission spectroscopy (ARPES) is employed to investigate the temperature (T) dependence of the electronic structure in BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic transformation in Fermi surface (FS) shape across TN is observed, as expected by first-principles band calculations. Polarization-dependent ARPES and band calculations consistently indicate that the observed FSs at kz ~ pi in the low-T antiferromagnetic (AF) state are dominated by the Fe3dzx orbital, leading to the two-fold electronic structure. These results indicate that magneto-structural transition in BaFe2As2 accompanies orbital-dependent modifications in the electronic structure.

قيم البحث

اقرأ أيضاً

The investigation of the magnetic phase transitions in the parent compounds of Fe-based superconductors is regarded essential for an understanding of the pairing mechanism in the related superconducting compounds. Even though the chemical and electro nic properties of these materials are often strongly inhomogeneous on a nanometer length scale, studies of the magnetic phase transitions using spatially resolved experimental techniques are still scarce. Here, we present a real space spin-resolved scanning tunneling microscopy investigation of the surface of Fe$_{1+y}$Te single crystals with different excess Fe content, $y$, which are continuously driven through the magnetic phase transition. For Fe$_{1.08}$Te, the transition into the low-temperature monoclinic commensurate antiferromagnetic phase is accompanied by the sudden emergence of ordering into four rotational domains with different orientations of the monoclinic lattice and of the antiferromagnetic order, showing how structural and magnetic order are intertwined. In the low-temperature phase of Fe$_{1.12}$Te one type of the domain boundaries disappears, and the transition into the paramagnetic phase gets rather broad, which is assigned to the formation of a mixture of orthorhombic and monoclinic phases.
72 - Y. Zhang , C. He , Z. R. Ye 2011
The superconductivity discovered in iron-pnictides is intimately related to a nematic ground state, where the C4 rotational symmetry is broken via the structural and magnetic transitions. We here study the nematicity in NaFeAs with the polarization d ependent angle-resolved photoemission spectroscopy. A uniaxial strain was applied on the sample to overcome the twinning effect in the low temperature C2-symmetric state, and obtain a much simpler electronic structure than that of a twinned sample. We found the electronic structure undergoes an orbital-dependent reconstruction in the nematic state, primarily involving the dxy- and dyz-dominated bands. These bands strongly hybridize with each other, inducing a band splitting, while the dxz-dominated bands only exhibit an energy shift without any reconstruction. These findings suggest that the development of orbital-dependent spin polarization is likely the dominant force to drive the nematicity, while the ferro-orbital ordering between dxz and dyz orbitals can only play a minor role here.
We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe$_2$As$_2$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 K and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the $Gamma$-point and an electron pocket at each of the X-points. The topology of the pockets has been concluded from the dispersion of the spectral weight as a function of binding energy. Changes in the spectral weight at the Fermi level upon variation of the polarization of the incident photons yield important information on the orbital character of the states near the Fermi level. No differences in the electronic structure between 20 and 300 K could be resolved. The results are compared with density functional theory band structure calculations for the tetragonal paramagnetic phase.
We performed an angle-resolved photoemission spectroscopy study of BaFe2As2, which is the parent compound of the so-called 122 phase of the iron-pnictide high-temperature superconductors. We reveal the existence of a Dirac cone in the electronic stru cture of this material below the spin-density-wave temperature, which is responsible for small spots of high photoemission intensity at the Fermi level. Our analysis suggests that the cone is slightly anisotropic and its apex is located very near the Fermi level, leading to tiny Fermi surface pockets. Moreover, the bands forming the cone show an anisotropic leading edge gap away from the cone that suggests a nodal spin-density-wave description.
251 - S. Sugai , Y. Mizuno , R. Watanabe 2010
Two magnon excitations and the nodal spin density wave (SDW) gap were observed in BaFe2As2 by Raman scattering. Below the SDW transition temperature (TSDW) nodal SDW gap opens together with new excitations in reconstructed electronic states. The two- magnon peak remains above TSDW and moreover the energy increases a little. The change from the long-range ordered state to the short-range correlated state is compared to the cuprate superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا