ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fundamental Planes of E+A galaxies and GALEX UV-excess early-type galaxies: Revealing their intimate connection

150   0   0.0 ( 0 )
 نشر من قبل Yumi Choi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yumi Choi




اسأل ChatGPT حول البحث

Strong Balmer absorption lines and the lack of Ha and [OII] emission lines signify that E+As are post-starburst systems. Recent studies suggest that E+As may undergo the transition from the `blue cloud to the `red sequence and eventually migrate to red sequence ETGs. An observational validation of this scenario is to identify the intervening galaxy population between E+As and the red-sequence. Motivated by recent findings with GALEX that a large fraction of ETGs exhibit UV-excess as a sign of RSF, we investigate the possible connection of the UV-excess galaxies to E+As. In particular, we examine the FP scaling relations of the largest sample of ~1,000 E+As selected from the SDSS and ~20,000 morphologically-selected SDSS ETGs with GALEX UV data. The FP parameters, combined with stellar population indicators, reveal a certain group of UV-excess ETGs that bridges between E+As and quiescent red galaxies. The newly identified galaxies are the post-starburst systems characterized by UV-excess but no Ha emission. This is a conceptual generalisation of E+A, in that the Balmer absorption line in the E+A definition is replaced with UV-optical colours that are far more sensitive to RSF than the Balmer lines. We refer to these UV-excess galaxies as E+a galaxies, which stands for elliptical (E) galaxies with a minority of A-type (a) young stars. The species are either (1) galaxies that experienced starbursts weaker than those observed in E+As (1~10% of E+As, mild E+As) or (2) the products of passively evolved E+As after quenching star formation quite a while ago (~1 Gyr, old E+As). We suggest that the latter type of E+a galaxies represents the most recent arrival to the red sequence in the final phase of the E+A to red early-type transition. (Abridged)



قيم البحث

اقرأ أيضاً

We present GALEX far-ultraviolet (FUV, $lambda_{eff}$=1538 AA) and near-ultraviolet (NUV, $lambda_{eff}$=2316 AA) surface photometry of 40 early-type galaxies (ETGs) selected from a wider sample of 65 nearby ETGs showing emission lines in their optic al spectra. We derive FUV and NUV surface brightness profiles, (FUV-NUV) colour profiles and D$_{25}$ integrated magnitudes. We extend the photometric study to the optical {it r} band from SDSS imaging for 14 of these ETGs. In general, the (FUV-NUV) radial colour profiles become redder with galactocentric distance in both rejuvenated ($leq 4$ Gyr) and old ETGs. Colour profiles of NGC 1533, NGC 2962, NGC 2974, NGC 3489, and IC 5063 show rings and/or arm-like structures, bluer than the body of the galaxy, suggesting the presence of recent star formation. Although seven of our ETGs show shell systems in their optical image, only NGC 7135 displays shells in the UV bands. We characterize the UV and optical surface brightness profiles, along the major axis, using a Sersic law. The Sersic law exponent, $n$, varies from 1 to 16 in the UV bands. S0 galaxies tend to have lower values of $n$ ($leq5$). The Sersic law exponent $n=4$ seems to be a watershed: ETGs with $n>4$ tend to have [$alpha$/Fe] greater than 0.15, implying a short star-formation time scale. We find a significant correlation between the FUV$-$NUV colour and central velocity dispersions $sigma$, with the UV colours getting bluer at larger $sigma$. This trend is likely driven by a combined effect of `downsizing and of the mass-metallicity relation.
This paper explores if, and to what an extent, the stellar populations of early type galaxies can be traced through the colour distribution of their globular cluster systems. The analysis, based on a galaxy sample from the Virgo ACS data, is an exten sion of a previous approach that has been successful in the cases of the giant ellipticals NGC 1399 and NGC 4486, and assumes that the two dominant GC populations form along diffuse stellar populations sharing the cluster chemical abundances and spatial distributions. The results show that a) Integrated galaxy colours can be matched to within the photometric uncertainties and are consistent with a narrow range of ages; b) The inferred mass to luminosity ratios and stellar masses are within the range of values available in the literature; c) Most globular cluster systems occupy a thick plane in the volume space defined by the cluster formation efficiency, total stellar mass and projected surface mass density. The formation efficiency parameter of the red clusters shows a dependency with projected stellar mass density that is absent for the blue globulars. In turn, the brightest galaxies appear clearly detached from that plane as a possible consequence of major past mergers; d) The stellar mass-metallicity relation is relatively shallow but shows a slope change at $M_*approx 10^{10} M_odot$. Galaxies with smaller stellar masses show predominantly unimodal globular cluster colour distributions. This result may indicate that less massive galaxies are not able to retain chemically enriched intestellar matter.
We present surface photometry of a sample of 52 galaxies from the GALEX and 2MASS data archives, these include 32 normal elliptical galaxies, 10 ellipticals with weak Liner or other nuclear activity, and 10 star forming ellipticals or early-type spir als. We examine the spatial distribution of the Far Ultra-Violet excess in these galaxies, and its correlation with dynamical and stellar population properties of the galaxies. From aperture photometry we find that all galaxies except for recent major remnants and galaxies with ongoing star formation show a positive gradient in the (FUV-NUV) colour determined from the GALEX images. The logarithmic gradient does not correlate with any stellar population parameter, but it does correlate with the central velocity dispersion. The strength of the excess on the other hand, correlates with both [alpha/Fe] and [Z/H], but more strongly with the former. We derive models of the underlying stellar population from the 2MASS H-band images, and the residual of the image from this model reveals a map of the centrally concentrated FUV excess. We examine a possible hypothesis for generating the FUV excess and the radial gradient in its strength, involving a helium abundance gradient set up early in the formation process of the galaxies. If this hypothesis is correct, the persistence of the gradients to the present day places a strong limit on the importance of dry mergers in the formation of ellipticals.
164 - Beverly J. Smith 2010
We have used the GALEX ultraviolet telescope to study stellar populations and star formation morphology in a well-defined sample of 42 nearby optically-selected pre-merger interacting galaxy pairs. Galaxy interactions were likely far more common in t he early Universe than in the present, thus our study provides a nearby well-resolved comparison sample for high redshift studies. We have combined the GALEX NUV and FUV images with broadband optical maps from the Sloan Digitized Sky Survey to investigate the ages and extinctions of the tidal features and the disks. The distributions of the UV/optical colors of the tidal features and the main disks of the galaxies are similar, however, the tidal features are bluer on average in NUV - g when compared with their own parent disks, thus tails and bridges are often more prominent relative to the disks in UV images compared to optical maps. This effect is likely due to enhanced star formation in the tidal features compared to the disks rather than reduced extinction, however, lower metallicities may also play a role. We have identified a few new candidate tidal dwarf galaxies in this sample. Other interesting morphologies such as accretion tails and `beads on a string are also seen in these images. We also identify a possible `Taffy galaxy in our sample, which may have been produced by a head-on collision between two galaxies. In only a few cases are strong tidal features seen in HI maps but not in GALEX.
We present a complete analysis of the Fundamental Plane of early-type galaxies (ETGs) in the nearby universe. The sample, as defined in paper I, comprises 39,993 ETGs located in environments covering the entire domain in local density (from field to cluster). We derive the FP of ETGs in the grizYJHK wavebands with a detailed discussion on fitting procedure, bias due to selection effects and bias due to correlated errors on r_e and mue as key factors in obtaining meaningful FP coefficients. Studying the Kormendy relation we find that its slope varies from g (3.44+-0.04) to K (3.80+-0.02) implying that smaller size ETGs have a larger ratio of optical/NIR radii than galaxies with larger re. We also examine the Faber-Jackson relation and find that its slope is similar for all wavebands, within the uncertainties, with a mean value of 0.198+-0.007. The variation of the FP coefficients for the magnitude selected sample from g through K amounts to 11%, negligible, and 10%, respectively. We find that the tilt of the FP becomes larger for higher Sersic index and larger axis ratios, independent of the waveband we measured the FP variables. This suggests that these variations are likely related to structural and dynamical differences of galaxian properties. We also show that the current semi-analytical models of galaxy formation reproduce very well the variation of age and metallicity of the stellar populations present in massive ETGs as a function of the stellar mass in these systems. In particular, we find that massive ETGs have coeval stellar pops with age varying only by a few % per decade in mass, while metallicity increases with stellar mass by 23% per mass decade.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا