ترغب بنشر مسار تعليمي؟ اضغط هنا

SN 1999ga: a low-luminosity linear type II supernova?

373   0   0.0 ( 0 )
 نشر من قبل Andrea Pastorello
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Pastorello




اسأل ChatGPT حول البحث

Type II-linear supernovae are thought to arise from progenitors that have lost most of their H envelope by the time of the explosion, and they are poorly understood because they are only occasionally discovered. It is possible that they are intrinsically rare, but selection effects due to their rapid luminosity evolution may also play an important role in limiting the number of detections. In this context, the discovery of a subluminous type II-linear event is even more interesting. We investigate the physical properties and characterise the explosion site of the type II SN 1999ga, which exploded in the nearby spiral galaxy NGC 2442. Spectroscopic and photometric observations of SN 1999ga allow us to constrain the energetics of the explosion and to estimate the mass of the ejected material, shedding light on the nature of the progenitor star in the final stages of its life. The study of the environment in the vicinity of the explosion site provides information on a possible relation between these unusual supernovae and the properties of the galaxies hosting them. Despite the lack of early-time observations, we provide reasonable evidence that SN 1999ga was probably a type II-linear supernova that ejected a few solar masses of material, with a very small amount of radioactive elements of the order of 0.01 solar masses.



قيم البحث

اقرأ أيضاً

We present the photometry and spectroscopy of SN 2015an, a Type II Supernova (SN) in IC 2367. The recombination phase of the SN lasts up to $sim$120 d, with a decline rate of 1.24 mag/100d, higher than the typical SNe IIP. The SN exhibits bluer colou rs than most SNe II, indicating higher ejecta temperatures. The absolute $V$-band magnitude of SN 2015an at 50 d is $-$16.83$pm$0.04 mag, pretty typical for SNe II. However, the $^{56}$Ni mass yield, estimated from the tail $V$-band light curve to be 0.021$pm$0.010 M$_odot$, is comparatively low. The spectral properties of SN 2015an are atypical, with low H$alpha$ expansion velocity and presence of high velocity component of H$alpha$ at early phases. Moreover, the continuum exhibits excess blue flux up to $sim$50 d, which is interpreted as a progenitor metallicity effect. The high velocity feature indicates ejecta-circumstellar material interaction at early phases. The semi-analytical modelling of the bolometric light curve yields a total ejected mass of $sim$12 M$_odot$, a pre-supernova radius of $sim$388~R$_odot$ and explosion energy of $sim$1.8 foe.
We present optical photometric and spectroscopic observations of the faint-and-fast evolving type Iax SN 2019gsc, extending from the time of g-band maximum until about fifty days post maximum, when the object faded to an apparent r-band magnitude m_r = 22.48+/-0.11 mag. SN 2019gsc reached a peak luminosity of only M_g = -13.58 +/- 0.15 mag, and is characterised with a post-maximum decline rate Delta(m_15)_g = 1.08 +/- 0.14 mag. These light curve parameters are comparable to those measured for SN 2008ha of M_g = -13.89 +/- 0.14 mag at peak and Delta(m_15)_g = 1.80 +/- 0.03 mag. The spectral features of SN 2019gsc also resemble those of SN 2008ha at similar phases. This includes both the extremely low ejecta velocity at maximum, about 3,000 km/s, and at late-time (phase +54 d) strong forbidden iron and cobalt lines as well as both forbidden and permitted calcium features. Furthermore, akin to SN 2008ha, the bolometric light curve of SN 2019gsc is consistent with the production of 0.003 +/- 0.001 Msol of nickel. The explosion parameters, M_ej = 0.13 Msol and E_k = 12 x 10E48 erg, are also similar to those inferred for SN 2008ha. We estimate a sub-solar oxygen abundance for the host galaxy of SN 2019gsc, (12 + log10(O/H) = 8.10 +/- 0.18 dex), consistent with the equally metal-poor environment of SN 2008ha. Altogether, our dataset of SN 2019gsc indicates that this is a member of a small but growing group of extreme SN Iax that includes SN 2008ha and SN 2010ae.
In this work, we present photometric and spectroscopic data of the low-luminosity Type IIP supernova (SN) 2018hwm. The object shows a faint ($M_r=-15$ mag) and very long ($sim$130 days) plateau, followed by a 2.7 mag drop in the $r$-band to the radio active tail. The first spectrum shows a blue continuum with narrow Balmer lines, while during the plateau the spectra show numerous metal lines, all with strong and narrow P-Cygni profiles. The expansion velocities are low, in the 1000-1400 km s$^{-1}$ range. The nebular spectrum, dominated by H$alpha$ in emission, reveals weak emission from [O I] and [Ca II] doublets. The absolute light curve and spectra at different phases are similar to those of low-luminosity SNe IIP. We estimate that 0.0085 $M_{odot}$ of $^{56}$Ni mass were ejected, through hydrodynamical simulations. The best fit of the model to the observed data is found for an extremely low explosion energy of 0.075 foe, a progenitor radius of 845 $R_{odot}$ and a final progenitor mass of 9-10 $M_{odot}$. Finally, we performed a modeling of the nebular spectrum, to establish the amount of oxygen and calcium ejected. We found a low M($^{16}$O)$approx 0.02$ $M_{odot}$, but a high M($^{40}$Ca) of 0.3 $M_{odot}$. The inferred low explosion energy, the low ejected $^{56}$Ni mass and the progenitor parameters, along with peculiar features observed in the nebular spectrum, are consistent with both an electron-capture SN explosion of a super-asymptotic giant branch star and with a low-energy, Ni-poor iron core-collapse SN from a 10-12 $M_{odot}$ red supergiant.
We present results of the photometric (from 3 to 509 days past explosion) and spectroscopic (up to 230 days past explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The {it (B-V)} colour evolution of SN 2015as closely resemb le those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the $B$-band maximum about 22 days after the explosion, at an absolute magnitude of -16.82 $pm$ 0.18 mag. At $sim$ 75 days after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P~Cygni features due to He I lines appear at around 30 days after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN~2015as, we estimate a $^{56}$Ni mass of $sim$ 0.08 M$_{odot}$ and ejecta mass of 1.1--2.2 M$_{odot}$, which are similar to the values inferred for SN 2008ax. The quasi bolometric analytical light curve modelling suggests that the progenitor of SN 2015as has a modest mass ($sim$ 0.1 M$_{odot}$), a nearly-compact ($sim$ 0.05$times$10$^{13}$ cm) H envelope on top of a dense, compact ($sim$ 2$times$10$^{11}$ cm) and a more massive ($sim$ 1.2 M$_{odot}$) He core. The analysis of the nebular phase spectra indicates that $sim$ 0.44 M$_{odot}$ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main sequence progenitor mass of $sim$ 15 M$_{odot}$ or a Wolf Rayet star of 20 M$_{odot}$.
We present optical and near-infrared photometry and spectroscopy of SN 2009ib, a Type II-P supernova in NGC 1559. This object has moderate brightness, similar to those of the intermediate-luminosity SNe 2008in and 2009N. Its plateau phase is unusuall y long, lasting for about 130 days after explosion. The spectra are similar to those of the subluminous SN 2002gd, with moderate expansion velocities. We estimate the $^{56}$Ni mass produced as $0.046 pm 0.015,{rm M}_{sun}$. We determine the distance to SN 2009ib using both the expanding photosphere method (EPM) and the standard candle method. We also apply EPM to SN 1986L, a type II-P SN that exploded in the same galaxy. Combining the results of different methods, we conclude the distance to NGC 1559 as $D=19.8 pm 3.0$ Mpc. We examine archival, pre-explosion images of the field taken with the Hubble Space Telescope, and find a faint source at the position of the SN, which has a yellow colour ($(V-I)_0 = 0.85$ mag). Assuming it is a single star, we estimate its initial mass as $M_{rm ZAMS}=20,{rm M}_{sun}$. We also examine the possibility, that instead of the yellow source the progenitor of SN 2009ib is a red supergiant star too faint to be detected. In this case we estimate the upper limit for the initial zero-age main sequence mass of the progenitor to be $sim 14-17,{rm M}_{sun}$. In addition, we infer the physical properties of the progenitor at the explosion via hydrodynamical modelling of the observables, and estimate the total energy as $sim 0.55 times 10^{51}$~erg, the pre-explosion radius as $sim 400,{rm R}_{sun}$, and the ejected envelope mass as $sim 15,{rm M}_{sun}$, which implies that the mass of the progenitor before explosion was $sim 16.5-17,{rm M}_{sun}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا