ترغب بنشر مسار تعليمي؟ اضغط هنا

V440 Per: the longest period overtone Cepheid

185   0   0.0 ( 0 )
 نشر من قبل Alex Schwarzenberg-Czerny
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

V440 Per is a Population I Cepheid with the period of 7.57 day and low amplitude, almost sinusoidal light and radial velocity curves. With no reliable data on the 1st harmonic, its pulsation mode identification remained controversial. We obtained a radial velocity curve of V440 Per with our new high precision and high throughput Poznan Spectroscopic Telescope. Our data reach the accuracy of 130 m/s per individual measurement and yield a secure detection of the 1st harmonic with the amplitude of A_2= 140+/- 15 m/s. The velocity Fourier phase phi_21 of V440 Per is inconsistent at the 7.25 sigma level with those of the fundamental mode Cepheids, implying that the star must be an overtone Cepheid, as originally proposed by Kienzle et al.(1999). Thus, V440 Per becomes the longest period Cepheid with the securely established overtone pulsations. We show, that the convective nonlinear pulsation hydrocode can reproduce the Fourier parameters of V440 Per very well. Requirement to match the observed properties of V440 Per constrains free parameters of the dynamical convection model used in the pulsation calculations, in particular the radiative losses parameter.



قيم البحث

اقرأ أيضاً

The dependency of the Cepheid Period-Luminosity Relation on chemical composition at different wavelengths is assessed via direct detailed abundance analysis of Galactic and Magellanic Cepheids, as derived from high resolution, high signal-to-noise sp ectra. Our measurements span one order of magnitude in iron content and allow to rule out at the ~ 9 sigma level the universality of the Period-Luminosity Relation in the V band, with metal rich stars being fainter than metal poor ones by ~0.3 mag. The dependency is less pronounced in the K band. Its magnitude and statistical significance decisively depend on detailed distance measurements to individual stars, as inferred via the Infrared Surface Brightness Method.
84 - Taichi Kato 2019
The post-outburst rebrightening phenomenon in dwarf novae and X-ray novae is still one of the most challenging subjects for theories of accretion disks. It has been widely recognized that post-outburst rebrightenings are a key feature of WZ Sge-type dwarf novae, which predominantly have short ($lesssim$0.06 d) orbital periods. I found four post-outburst rebrightenings in ASASSN-14ho during its 2014 outburst, whose orbital period has recently measured to be exceptionally long [0.24315(10) d]. Using the formal solution of the radial velocity study in the literature, I discuss the possibility that this object can be an SU UMa-type dwarf nova near the stability border of the 3:1 resonance despite its exceptionally long orbital period. Such objects are considered to be produced if mass transfer occurs after the secondary has undergone significant nuclear evolution and they may be hidden in a significant number among dwarf novae showing multiple post-outburst rebrightenings.
The parameters for the newly-discovered open cluster Alessi 95 are established on the basis of available photometric and spectroscopic data, in conjunction with new observations. Colour excesses for spectroscopically-observed B and A-type stars near SU Cas follow a reddening relation described by E(U-B)/E(B-V)=0.83+0.02*E(B-V), implying a value of R=Av/E(B-V)~2.8 for the associated dust. Alessi 95 has a mean reddening of E(B-V)_(B0)=0.35+-0.02 s.e., an intrinsic distance modulus of Vo-Mv=8.16+-0.04 s.e. (+-0.21 s.d.), d=429+-8 pc, and an estimated age of 10^8.2 yr from ZAMS fitting of available UBV, CCD BV, NOMAD, and 2MASS JHKs observations of cluster stars. SU Cas is a likely cluster member, with an inferred space reddening of E(B-V)=0.33+-0.02 and a luminosity of <Mv>=-3.15+-0.07 s.e., consistent with overtone pulsation (P_FM=2.75 d), as also implied by the Cepheids light curve parameters, rate of period increase, and Hipparcos parallaxes for cluster stars. There is excellent agreement of the distance estimates for SU Cas inferred from cluster ZAMS fitting, its pulsation parallax derived from the infrared surface brightness technique, and Hipparcos parallaxes, which all agree to within a few percent.
The Cepheid Period-Luminosity law is a key rung on the extragalactic distance ladder. However, numerous Cepheids are known to undergo period variations. Monitoring, refining, and understanding these period variations allows us to better determine the parameters of the Cepheids themselves and of the instability strip in which they reside, and to test models of stellar evolution. VZ Cyg, a classical Cepheid pulsating at $sim$4.864 days, has been observed for over 100 years. Combining data from literature observations, the Kilodegree Extremely Little Telescope (KELT) transit survey, and new targeted observations with the Robotically Controlled Telescope (RCT) at Kitt Peak, we find a period change rate of $dP/dt = -0.0642 pm 0.0018$ sec yr$^{-1}$. However, when only the recent observations are examined, we find a much higher period change rate of $dP/dt = - 0.0923 pm 0.0110$ sec yr$^{-1}$. This higher rate could be due to an apparent long-term (P $approx$ 26.5 yr) cyclic period variation. The possible interpretations of this single Cepheids complex period variations underscore both the need to regularly monitor pulsating variables, and the important benefits that photometric surveys such as KELT can have on the field. Further monitoring of this interesting example of Cepheid variability is recommended to confirm and better understand the possible cyclic period variations. Further, Cepheid timing analyses are necessary to fully understand their current behaviors and parameters, as well as their evolutionary histories.
In this paper, we derive the period-luminosity (P-L) relation for Large Magellanic Cloud (LMC) Cepheids based on mid-infrared AKARI observations. AKARIs IRC sources were matched to the OGLE-III LMC Cepheid catalog. Together with the available I band light curves from the OGLE-III catalog, potential false matches were removed from the sample. This procedure excluded most of the sources in the S7 and S11 bands: hence only the P-L relation in the N3 band was derived in this paper. Random-phase corrections were included in deriving the P-L relation for the single epoch AKARI data, even though the derived P-L relation is consistent with the P-L relation without random-phase correction, though there is a sim 7 per-cent improvement in the dispersion of the P-L relation. The final adopted N3 band P-L relation is N3 = -3.246 log(P) + 15.844, with a dispersion of 0.149.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا