ترغب بنشر مسار تعليمي؟ اضغط هنا

All-optical Imprinting of Geometric Phases onto Matter Waves

112   0   0.0 ( 0 )
 نشر من قبل Jiangbin Gong Prof.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional optical phase imprinting of matter waves is of a dynamical nature. In this paper we show that both Abelian and non-Abelian geometric phases can be optically imprinted onto matter waves, yielding a number of interesting phenomena such as wavepacket re-directing and wavepacket splitting. In addition to their fundamental interest, our results open up new opportunities for robust optical control of matter waves.



قيم البحث

اقرأ أيضاً

The Cauchy-Schwarz (CS) inequality -- one of the most widely used and important inequalities in mathematics -- can be formulated as an upper bound to the strength of correlations between classically fluctuating quantities. Quantum mechanical correlat ions can, however, exceed classical bounds.Here we realize four-wave mixing of atomic matter waves using colliding Bose-Einstein condensates, and demonstrate the violation of a multimode CS inequality for atom number correlations in opposite zones of the collision halo. The correlated atoms have large spatial separations and therefore open new opportunities for extending fundamental quantum-nonlocality tests to ensembles of massive particles.
Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing, a broad effort is currently underway to build large-scale programmable quantum systems. Such syst ems provide unique insights into strongly correlated quantum matter, while at the same time enabling new methods for computation and metrology. Here, we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled via coherent atomic excitation into Rydberg states. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states, and demonstrate the universal properties of an Ising quantum phase transition in (2+1) dimensions. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation, experimentally map the phase diagram, and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics, and hardware-efficient realization of quantum algorithms.
Entangled states of rotating, trapped ultracold bosons form a very promising scenario for quantum metrology. In order to employ such states for metrology, it is vital to understand their detailed form and the enhanced accuracy with which they could m easure phase, in this case generated through rotation. In this work we study the rotation of ultracold bosons in an asymmetric trapping potential beyond the lowest Landau level (LLL) approximation. We demonstrate that whilst the LLL can identify reasonably the critical frequency for a quantum phase transition and entangled state generation, it is vital to go beyond the LLL to identify the details of the state and quantify the quantum Fisher information (which bounds the accuracy of the phase measurement). We thus identify a new parameter regime for useful entangled state generation, amenable to experimental investigation.
We report the all-optical production of a Rb87 Bose-Einstein condensate (BEC) in a simple 1.06 micron dipole trap experiment. We load a single beam dipole trap directly from a magneto-optic trap (MOT) using an optimized loading sequence. After evapor ation in the single beam, a second crossed beam is used for compression. The intensity in both beams is then reduced for evaporation to BEC. We obtain a BEC with 3.5E4 atoms after 3 seconds of total evaporation time. We also give a detailed account of the thermal distribution in cross beam traps. This account highlights the possible difficulties in using shorter wavelength lasers to condense all optically.
We investigate the single-atom transport in a two-leg ladder with only two rungs, which together with the legs, enclose an artificial magnetic flux. Here, the atoms on the two legs possess opposite onsite energies that produce an energy offeset. We f ind that the atom incoming from the left leg can experience from blockade to tranparency via modifying the onsite energy, hopping strength, or magnetic flux, which can be potentially used for a quantum switcher. Furthermore, the atom incoming from the left leg can also be perfectly routed into the right leg, when, intriguingly, the outgoing atom in the R channel possesses a wavevector that can be modulated by the magnetic flux. The result may be potentially used for the interface that controls the communication between two individual quantum devices of cold atoms. The method can also be generalized to other artificial quantum systems, such as superconducting quantum circuit system, optomechanical system, etc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا