ترغب بنشر مسار تعليمي؟ اضغط هنا

A peculiar jet and arc of molecular gas toward the rich and young stellar cluster Westerlund 2 and a TeV gamma ray source

104   0   0.0 ( 0 )
 نشر من قبل Naoko Furukawa
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have discovered remarkable jet- and arc-like molecular features toward the rich and young stellar cluster Westerlund2. The jet has a length of ~100 pc and a width of ~10 pc, while the arc shows a crescent shape with a radius of ~30 pc. These molecular features each have masses of ~10000 solar mass and show spatial correlations with the surrounding lower density HI gas. The jet also shows an intriguing positional alignment with the core of the TeV gamma ray source HESS J1023-575 and with the MeV/GeV gamma-ray source recently reported by the Fermi collaboration. We argue that the jet and arc are caused by an energetic event in Westerlund 2, presumably due to an anisotropic supernova explosion of one of the most massive member stars. While the origin of the TeV and GeV gamma-ray sources is uncertain, one may speculate that they are related to the same event via relativistic particle acceleration by strong shock waves produced at the explosion or by remnant objects such as a pulsar wind nebula or microquasar.



قيم البحث

اقرأ أيضاً

Results obtained in very-high-energy (VHE; E > 100 GeV) gamma-ray observations performed with the H.E.S.S. telescope array are used to investigate particle acceleration processes in the vicinity of the young massive stellar cluster Westerlund 1 (Wd 1 ). Imaging of Cherenkov light from gamma-ray induced particle cascades in the Earths atmosphere is used to search for VHE gamma rays from the region around Wd 1. Possible catalogued counterparts are searched for and discussed in terms of morphology and energetics of the H.E.S.S. source. The detection of the degree-scale extended VHE gamma-ray source HESS J1646-458 is reported based on 45 hours of H.E.S.S. observations performed between 2004 and 2008. The VHE gamma-ray source is centred on the nominal position of Wd 1 and detected with a total statistical significance of ~20sigma. The emission region clearly extends beyond the H.E.S.S. point-spread function (PSF). The differential energy spectrum follows a power law in energy with an index of Gamma=2.19 pm 0.08_{stat} pm 0.20_{sys} and a flux normalisation at 1 TeV of Phi_0 = (9.0 pm 1.4_{stat} pm 1.8_{sys}) x 10^{-12} TeV^{-1} cm^{-2} s^{-1}. The integral flux above 0.2 TeV amounts to (5.2 pm 0.9) x 10^{-11} cm^{-2} s^{-1}. Four objects coincident with HESS J1646-458 are discussed in the search of a counterpart, namely the magnetar CXOU J164710.2-455216, the X-ray binary 4U 1642-45, the pulsar PSR J1648-4611 and the massive stellar cluster Wd 1. In a single-source scenario, Wd 1 is favoured as site of VHE particle acceleration. Here, a hadronic parent population would be accelerated within the stellar cluster. Beside this, there is evidence for a multi-source origin, where a scenario involving PSR J1648-4611 could be viable to explain parts of the VHE gamma-ray emission of HESS J1646-458.
Massive stellar clusters have recently been hypothesised as candidates for the acceleration of hadronic cosmic rays up to PeV energies. Previously, the H.E.S.S. Collaboration has reported about very extended $gamma$-ray emission around Westerlund 1, a massive young stellar cluster in the Milky Way. In this contribution we present an updated analysis that employs a new analysis technique and is based on a much larger data set, allowing us to constrain better the morphology and the energy spectrum of the emission. The analysis technique used is a three-dimensional likelihood analysis, which is especially well suited for largely extended sources. The origin of the $gamma$-ray emission will be discussed in light of multi-wavelength observations.
The Galactic TeV $gamma$-ray source HESS$,$J1804$-$216 is currently an unidentified source. In an attempt to unveil its origin, we present here the most detailed study of interstellar gas using data from the Mopra Southern Galactic Plane CO Survey, 7 and 12$,$mm wavelength Mopra surveys and Southern Galactic Plane Survey of HI. Several components of atomic and molecular gas are found to overlap HESS$,$J1804$-$216 at various velocities along the line of sight. The CS(1-0) emission clumps confirm the presence of dense gas. Both correlation and anti-correlation between the gas and TeV $gamma$-ray emission have been identified in various gas tracers, enabling several origin scenarios for the TeV $gamma$-ray emission from HESS$,$J1804$-$216. For a hadronic scenario, SNR$,$G8.7$-$0.1 and the progenitor SNR of PSR$,$J1803$-$2137 require cosmic ray (CR) enhancement factors of $mathord{sim} 50$ times the solar neighbour CR flux value to produce the TeV $gamma$-ray emission. Assuming an isotropic diffusion model, CRs from both these SNRs require a slow diffusion coefficient, as found for other TeV SNRs associated with adjacent ISM gas. The morphology of gas located at 3.8$,$kpc (the dispersion measure distance to PSR$,$J1803$-$2137) tends to anti-correlate with features of the TeV emission from HESS$,$J1804$-$216, making the leptonic scenario possible. Both pure hadronic and pure leptonic scenarios thus remain plausible.
148 - N. Furukawa , A. Ohama , T. Fukuda 2014
We have made new CO observations of two molecular clouds, which we call jet and arc clouds, toward the stellar cluster Westerlund 2 and the TeV gamma-ray source HESS J1023-575. The jet cloud shows a linear structure from the position of Westerlund 2 on the east. In addition, we have found a new counter jet cloud on the west. The arc cloud shows a crescent shape in the west of HESS J1023-575. A sign of star formation is found at the edge of the jet cloud and gives a constraint on the age of the jet cloud to be ~Myrs. An analysis with the multi CO transitions gives temperature as high as 20 K in a few places of the jet cloud, suggesting that some additional heating may be operating locally. The new TeV gamma-ray images by H.E.S.S. correspond to the jet and arc clouds spatially better than the giant molecular clouds associated with Westerlund 2. We suggest that the jet and arc clouds are not physically linked with Westerlund 2 but are located at a greater distance around 7.5 kpc. A microquasar with long-term activity may be able to offer a possible engine to form the jet and arc clouds and to produce the TeV gamma-rays, although none of the known microquasars have a Myr age or steady TeV gamma-rays. Alternatively, an anisotropic supernova explosion which occurred ~Myr ago may be able to form the jet and arc clouds, whereas the TeV gamma-ray emission requires a microquasar formed after the explosion.
Furukawa et al. 2009 reported the existence of a large mass of molecular gas associated with the super star cluster Westerlund 2 and the surrounding HII region RCW49, based on a strong morphological correspondence between NANTEN2 12CO(J=2-1) emission and Spitzer IRAC images of the HII region. We here present temperature and density distributions in the associated molecular gas at 3.5 pc resolution, as derived from an LVG analysis of the 12CO(J=2-1), 12CO(J=1-0) and 13CO(J=2-1) transitions. The kinetic temperature is as high as 60-150 K within a projected distance of 5-10 pc from Westerlund 2 and decreases to as low as 10 K away from the cluster. The high temperature provides robust verification that the molecular gas is indeed physically associated with the HII region, supporting Furukawa et al.s conclusion. The derived temperature is also roughly consistent with theoretical calculations of photo dissociation regions (PDRs), while the low spatial resolution of the present study does not warrant a more detailed comparison with PDR models. We suggest that the molecular clouds presented here will serve as an ideal laboratory to test theories on PDRs in future higher resolution studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا