ترغب بنشر مسار تعليمي؟ اضغط هنا

New iron-based arsenide oxides (Fe2As2)(Sr4M2O6)(M = Sc, Cr)

98   0   0.0 ( 0 )
 نشر من قبل Hiraku Ogino Dr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have discovered new layered oxyarsenides (Fe2As2)(Sr4M2O6) (M = Sc, Cr: M-22426). These materials are isostructural with (Fe2P2)(Sr4Sc2O6), which was found in our previous study. The new compounds are tetragonal with a space group of P4/nmm and consist of the anti-fluorite type FeAs layer and perovskite-type blocking layer. The lattice constants are a = 4.050 A, c = 15.809 A for M = Sc and a = 3.918 A, c = 15.683 A for M = Cr. These compounds have long interlayer Fe-Fe distances corresponding to the c-axis length, the 15.8 A in Sc-22426 is the longest in the iron-based oxypnictide systems. Chemical flexibility of the perovskite block in this system was probed by chromium containing (Fe2As2)(Sr4Cr2O6). Different trends were found in bond angle and bond length of the new oxypnictides compared to the reported systems, such as REFePnO. Absence of superconductivity in these compounds is considered to be due to insufficient carrier concentration as in the case of undoped REFeAsO.

قيم البحث

اقرأ أيضاً

We synthesized new layered iron arsenide oxides (Fe2As2)(Sr4(Sc,Ti)3O8),(Fe2As2)(Ba4Sc3O7.5), and (Fe2As2)(Ba3Sc2O5). The crystal structures of these compounds are tetragonal with a space group of I4/mmm. The structure of (Fe2As2)(Sr4(Sc,Ti)3O8) and (Fe2As2)(Ba4Sc3O7.5) consists of the alternate stacking of antifluorite Fe2As2 layers and triple perovskite-type oxide layers. The interlayer distance between the Fe planes of (Fe2As2)(Ba4Sc3O7.5) is ~18.7 A. Moreover, the a-axis of (Fe2As2)(Ba3Sc2O5) is the longest among the layered iron pnictides, indicating the structural flexibility of the layered iron pnictide containing perovskite-type layers. The bulk sample of (Fe2As2)(Sr4(Sc0.6Ti0.4)3O8) exhibited diamagnetism up to 28 K in susceptibility measurements.
135 - H. Ogino , S. Sato , Y. Matsumura 2010
Structural features of newly found perovskite-based iron pnictide oxide system have been systematically studied. Compared to REFePnO system, perovskite-based system tend to have lower Pn-Fe-Pn angle and higher pnictogen height owing to low electroneg ativity of alkaline earth metal and small repulsive force between pnictogen and oxygen atoms. As-Fe-As angles of (Fe2As2)(Sr4Cr2O6), (Fe2As2)(Sr4V2O6) and (Fe2Pn2)(Sr4MgTiO6) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may leads to realization of high Tc superconductivity.
A new layered iron arsenide oxide (Fe2As2)(Ca4(Mg,Ti)3Oy) was discovered. Its crystal structure is tetragonal with a space group of I4/mmm consisted of the anti-fluorite type FeAs layer and blocking layer of triple perovskite cells and is identical w ith (Fe2As2)(Sr4(Sc,Ti)3O8) discovered in our previous study. The lattice constants of (Fe2As2)(Ca4(Mg,Ti)3Oy) are a = 3.877 A and c = 33.37 A. This compound exhibited bulk superconductivity up to 43 K in susceptibility measurement without intentional carrier doping. A resistivity drop was observed at ~47 K and zero resistance was achieved at 42 K. These values correspond to the second highest Tc among the layered iron-based superconductors after REFeAsO system.
A new iron-based superconductor (Ca,Pr)FeAs2 was discovered. Plate-like crystals of the new phase were obtained and crystal structure was investigated by single-crystal X-ray diffraction analysis. The structure was identified as the monoclinic system with space group P21/m, and is composed of two Ca(Pr) planes, anti-fluorite Fe2As2 layers, and As2 zigzag chain layers. Plate-like crystals composed of the new phase showed superconductivity with Tc ~20 K in both magnetization and resistivity measurements.
The electrical resistivity rho of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured in applied pressures up to 2.6 GPa for four underdoped samples, with x = 0.16, 0.18, 0.19 and 0.21. The antiferromagnetic ordering temperature T_N, detected as a sharp anomaly in rho(T), decreases linearly with pressure. At pressures above around 1.0 GPa, a second sharp anomaly is detected at a lower temperature T_0, which rises with pressure. We attribute this second anomaly to the onset of a phase that causes a reconstruction of the Fermi surface. This new phase expands with increasing x and it competes with superconductivity. We discuss the possibility that a second spin-density wave orders at T_0, with a Q vector distinct from that of the spin-density wave that sets in at T_N.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا