ﻻ يوجد ملخص باللغة العربية
If dark matter (DM) annihilation accounts for the tantalizing excess of cosmic ray electron/positrons, as reported by the PAMELA, ATIC, HESS and FERMI observatories, then the implied annihilation cross section must be relatively large. This results, in the context of standard cosmological models, in very small relic DM abundances that are incompatible with astrophysical observations. We explore possible resolutions to this apparent conflict in terms of non-standard cosmological scenarios; plausibly allowing for large cross sections, while maintaining relic abundances in accord with current observations.
We analyze new diffuse gamma-ray data from the Fermi Gamma-ray Space Telescope, which do not confirm an excess in the EGRET data at galactic mid-latitudes, in combination with measurements of electron and positron fuxes from PAMELA, Fermi and HESS wi
Dark matter decaying or annihilating into mu+mu- or tau+tau- has been proposed as an explanation for the e+e- anomalies reported by PAMELA and Fermi. Recent analyses show that IceCube, supplemented by DeepCore, will be able to significantly constrain
Assuming that the positron excess in PAMELA satellite data is a consequence of annihilations of cold dark matter, we consider from a model-independent perspective if the data show a preference for the spin of dark matter. We then perform a general an
We discuss how the cosmic ray signals reported by the PAMELA and ATIC/PPB-BETS experiments may be understood in a Standard Model (SM) framework supplemented by type II seesaw and a stable SM singlet scalar boson as dark matter. A particle physics exp
We point out a selection rule for enhancement (suppression) of odd (even) partial waves of dark matter coannihilation or annihilation using Sommerfeld effect. Using this, the usually velocity-suppressed p-wave annihilation can dominate the annihilati