ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope

106   0   0.0 ( 0 )
 نشر من قبل Drake Deming
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths (1-3 Earth radii). Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars, that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope (JWST). We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15-micron bands to measure CO2 absorption in superEarths, as well as JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and CO2 absorption at 4.3-microns. We project that TESS will discover about eight nearby habitable transiting superEarths. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, CO2) in one to four nearby habitable TESS superEarths.



قيم البحث

اقرأ أيضاً

The James Webb Space Telescope (JWST) provides the opportunity for ground-breaking observations of asteroids. It covers wavelength regions that are unavailable from the ground, and does so with unprecedented sensitivity. The main-belt and Trojan aste roids are all observable at some point in the JWST lifetime. We present an overview of the capabilities for JWST and how they apply to the asteroids as well as some short science cases that take advantage of these capabilities.
176 - Imre Bartos 2015
Kilonovae represent an important electromagnetic counterpart for compact binary mergers, which could become the most commonly detected gravitational wave (GW) source. Follow-up observations, triggered by GW events, of kilonovae are nevertheless diffi cult due to poor localization by GW detectors and due to their faint near-infrared peak emission that has limited observational capability. We show that the Near-Infrared Camera (NIRCam) on the James Webb Space Telescope (JWST) will be able to detect kilonovae within the relevant GW-detection range of $sim$ 200 Mpc in short ($lesssim$ 12-second) exposure times for a week following the merger. Despite this sensitivity, a kilonova search fully covering a fiducial localized area of $10$ $mbox{deg}^2$ will not be viable with NIRCam due to its limited field of view. However, targeted surveys may be developed to optimize the likelihood of discovering kilonovae efficiently within limited observing time. We estimate that a survey of $10$ $mbox{deg}^2$ focused on galaxies within 200 Mpc would require about 13 hours, dominated by overhead times; a survey further focused on galaxies exhibiting high star-formation rates would require $sim$ 5 hours. The characteristic time may be reduced to as little as $sim$4 hours, without compromising the likelihood of detecting kilonovae, by surveying sky areas associated with 50%, rather than 90%, confidence regions of 3 GW events, rather than a single event. On detection and identification of a kilonova, a limited number of NIRCam follow-up observations could constrain the properties of matter ejected by the binary and the equation of state of dense nuclear matter.
The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System scienc e facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.
The James Webb Space Telescope (JWST), as the largest space-based astronomical observatory with near- and mid-infrared instrumentation, will elucidate many mysterious aspects of comets. We summarize four cometary science themes especially suited for this telescope and its instrumentation: the drivers of cometary activity, comet nucleus heterogeneity, water ice in comae and on surfaces, and activity in faint comets and main-belt asteroids. With JWST, we can expect the most distant detections of gas, especially CO2, in what we now consider to be only moderately bright comets. For nearby comets, coma dust properties can be studied with their driving gases, measured simultaneously with the same instrument or contemporaneously with another. Studies of water ice and gas in the distant Solar System will help us test our understanding of cometary interiors and coma evolution. The question of cometary activity in main-belt comets will be further explored with the possibility of a direct detection of coma gas. We explore the technical approaches to these science cases and provide simple tools for estimating comet dust and gas brightness. Finally, we consider the effects of the observatorys non-sidereal tracking limits, and provide a list of potential comet targets during the first 5 years of the mission.
A number of transiting, potentially habitable Earth-sized exoplanets have recently been detected around several nearby M dwarf stars. These worlds represent important targets for atmospheric characterization for the upcoming NASA James Webb Space Tel escope. Given that available time for exoplanet characterization will be limited, it is critically important to first understand the capabilities and limitations of JWST when attempting to detect atmospheric constituents for potentially Earth-like worlds orbiting cool stars. Here, we explore coupled climate-chemistry atmospheric models for Earth-like planets orbiting a grid of M dwarf hosts. Using a newly-developed and validated JWST instrument model - the JWST Exoplanet Transit Simulator (JETS) - we investigate the detectability of key biosignature and habitability indicator gaseous species for a variety of relevant instruments and observing modes. Spectrally-resolved detection scenarios as well as cases where the spectral impact of a given species is integrated across the entire range of an instrument/mode are considered and serve to highlight the importance of considering information gained over an entire observable spectral range. When considering the entire spectral coverage of an instrument/mode, detections of methane, carbon dioxide, oxygen and water at signal-to-noise ratio 5 could be achieved with observations of several tens of transits (or less) for cloud-free Earth-like worlds orbiting mid- to late-type M dwarfs at system distances of up to 10-15 pc. When compared to previous results, requisite exposure times for gas species detection depend on approaches to quantifying the spectral impact of the species as well as underlying photochemical model assumptions. Thus, constraints on atmospheric abundances, even if just upper limits, by JWST have the potential to further our understanding of terrestrial atmospheric chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا