ترغب بنشر مسار تعليمي؟ اضغط هنا

The classification of Leibniz superalgebras of nilindex n+m (m eq 0)

201   0   0.0 ( 0 )
 نشر من قبل Bakhrom Omirov Abdazovich
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate the description of the complex Leibniz superalgebras with nilindex n+m, where n and m ($m eq 0$) are dimensions of even and odd parts, respectively. In fact, such superalgebras with characteristic sequence equal to $(n_1, ..., n_k | m_1, ..., m_s)$ (where $n_1+... +n_k=n, m_1+ ... + m_s=m$) for $n_1geq n-1$ and $(n_1, ..., n_k | m)$ were classified in works cite{FilSup}--cite{C-G-O-Kh1}. Here we prove that in the case of $(n_1, ..., n_k| m_1, ..., m_s)$, where $n_1leq n-2$ and $m_1 leq m-1$ the Leibniz superalgebras have nilindex less than n+m. Thus, we complete the classification of Leibniz superalgebras with nilindex n+m.



قيم البحث

اقرأ أيضاً

We present the description up to isomorphism of Leibniz superalgebras with characteristic sequence $(n|m_1,...,m_k)$ and nilindex $n+m,$ where $m=m_1+ >...+m_k,$ $n$ and $m$ ($m eq 0$) are dimensions of even and odd parts, respectively.
In this work we investigate the complex Leibniz superalgebras with characteristic sequence $(n_1,...,n_k|m)$ and nilindex n+m, where $n=n_1+...+n_k,$ n and m (m is not equal to zero) are dimensions of even and odd parts, respectively. Such superalgeb ras with condition n_1 > n-2 were classified in cite{FilSup}--cite{C-G-O-Kh}. Here we prove that in the case $n_1 < n-1$ the Leibniz superalgebras have nilindex less than $n+m.$ Thus, we get the classification of Leibniz superalgebras with characteristic sequence $(n_1, ...,n_k|m)$ and nilindex n+m.
In this work we investigate the complex Leibniz superalgebras with characteristic sequence $(n-1, 1 | m_1, ..., m_k)$ and with nilindex equal to $n+m.$ We prove that such superalgebras with the condition $m_2 eq0$ have nilindex less than $n+m$. There fore the complete classification of Leibniz algebras with characteristic sequence $(n-1, 1 | m_1, ..., m_k)$ and with nilindex equal to $n+m$ is reduced to the classification of filiform Leibniz superalgebras of nilindex equal to $n+m,$ which was provided in cite{AOKh} and cite{GKh}.
It is proved that there exist no simple finite-dimensional Filippov superalgebras of type A(m,n) over an algebraically closed field of characteristic 0.
In this paper we present the classification of a subclass of naturally graded Leibniz algebras. These $n$-dimensional Leibniz algebras have the characteristic sequence equal to (n-3,3). For this purpose we use the software Mathematica.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا