ﻻ يوجد ملخص باللغة العربية
We present a structural analysis of NGC891, an edge-on galaxy that has long been considered to be an analogue of the Milky Way. Using starcounts derived from deep HST/ACS images, we detect the presence of a thick disk component in this galaxy with vertical scale height 1.44+/-0.03 kpc and radial scale length 4.8+/-0.1 kpc, only slightly longer than that of the thin disk. A stellar spheroid with a de Vaucouleurs-like profile is detected from a radial distance of 0.5 kpc to the edge of the survey at 25 kpc; the structure appears to become more flattened with distance, reaching q = 0.50 in the outermost halo region probed. The halo inside of 15 kpc is moderately metal-rich (median [Fe/H] ~ -1.1) and approximately uniform in median metallicity. Beyond that distance a modest chemical gradient is detected, with the median reaching [Fe/H] ~ -1.3 at 20 kpc. We find evidence for subtle, but very significant, small-scale variations in the median colour and density over the halo survey area. We argue that the colour variations are unlikely to be due to internal extinction or foreground extinction, and reflect instead variations in the stellar metallicity. Their presence suggests a startling conclusion: that the halo of this galaxy is composed of a large number of incompletely-mixed sub-populations, testifying to its origin in a deluge of small accretions.
We present deep ACS images of 3 fields in the edge-on disk galaxy NGC 891, which extend from the plane of the disk to 12 kpc, and out to 25 kpc along the major axis. The photometry of individual stars reaches 2.5 magnitudes below the tip of the RGB.
Recent panoramic observations of the dominant spiral galaxies of the Local Group have revolutionized our view of how these galaxies assemble their mass. However, it remains completely unclear whether the properties of the outer regions of the Local G
We consider the possible pattern of the overall spiral structure of the Galaxy, using data on the distribution of neutral (atomic), molecular, and ionized hydrogen, on the base of the hypothesis of the spiral structure being symmetric, i.e. the assum
The high cosmological precision offered by the next generation of galaxy surveys hinges on improved corrections for Galactic dust extinction. We explore the possibility of estimating both the dust extinction and large-scale structure from a single ph
We simulate an isolated, magnetised Milky Way-like disc galaxy using a self-consistent model of unresolved star formation and feedback, evolving the system until it reaches statistical steady state. We show that the quasi-steady-state structure is di