ترغب بنشر مسار تعليمي؟ اضغط هنا

An improved model for the transit entropy of monatomic liquids

31   0   0.0 ( 0 )
 نشر من قبل Eric D. Chisolm
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the original formulation of vibration-transit (V-T) theory for monatomic liquid dynamics, the transit contribution to entropy was taken to be a universal constant, calibrated to the constant-volume entropy of melting. This model suffers two deficiencies: (a) it does not account for experimental entropy differences of 2% among elemental liquids, and (b) it implies a value of zero for the transit contribution to internal energy. The purpose of this paper is to correct these deficiencies. To this end, the V-T equation for entropy is fitted to an overall accuracy of 0.1% to the available experimental high temperature entropy data for elemental liquids. The theory contains two nuclear motion contributions: (a) the dominant vibrational contribution S_{vib}(T/theta_0), where T is temperature and theta_0 is the vibrational characteristic temperature, and (b) the transit contribution S_{tr}(T/theta_{tr}), where theta_{tr} is a scaling temperature for each liquid. The appearance of a common functional form of S_{tr} for all the liquids studied is a property of the experimental data, when analyzed via the V-T formula. The resulting S_{tr} implies the correct transit contribution to internal energy. The theoretical entropy of melting is derived, in a single formula applying to normal and anomalous melting alike. An ab initio calculation of theta_0, based on density functional theory, is reported for liquid Na and Cu. Comparison of these calculations with the above analysis of experimental entropy data provides verification of V-T theory. In view of the present results, techniques currently being applied in ab initio simulations of liquid properties can be employed to advantage in the further testing and development of V-T theory.

قيم البحث

اقرأ أيضاً

In applying Vibration-Transit (V-T) theory of liquid dynamics to the thermodynamic properties of monatomic liquids, the point has been reached where an improved model is needed for the small (approx. 10%) transit contribution. Toward this goal, an an alysis of the available high-temperature experimental entropy data for elemental liquids was recently completed [D. C. Wallace, E. D. Chisolm, and N. Bock, Phys. Rev. B 79, 051201 (2009)]. This analysis yields a common curve of transit entropy vs. T/theta_{tr}, where T is temperature and theta_{tr} is a scaling temperature for each element. In the present paper, a statistical mechanics model is constructed for the transit partition function, and is calibrated to the experimental transit entropy curve. The model has two scalar parameters, and captures the temperature scaling of experiment. The calibrated model fits the experimental liquid entropy to high accuracy at all temperatures. With no additional parameters, the model also agrees with both experiment and molecular dynamics for the internal energy vs. T for Na. With the calibrated transit model, V-T theory provides equations subject to ab initio evaluation for thermodynamic properties of monatomic liquids. This will allow the range of applicability of the theory, and its overall accuracy, to be determined. More generally, the hypothesis of V-T theory, which divides the many-atom potential energy valleys into random and symmetric classes, can also be tested for its application beyond monatomic systems.
We examine the distinct part of the density autocorrelation function Fd(q,t), also called the intermediate scattering function, from the point of view of the vibration-transit (V-T) theory of monatomic liquid dynamics. A similar study has been report ed for the self part, and we study the self and distinct parts separately because their damping processes are not simply related. We begin with the perfect vibrational system, which provides precise definitions of the liquid correlations, and provides the vibrational approximation Fdvib(q,t) at all q and t. Two independent liquid correlations are defined, motional and structural, and these are decorrelated sequentially, with a crossover time tc(q). This is done by two independent decorrelation processes: the first, vibrational dephasing, is naturally present in Fdvib(q,t) and operates to damp the motional correlation; the second, transit-induced decorrelation, is invoked to enhance the damping of motional correlation, and then to damp the structural correlation. A microscopic model is made for the transit drift, the averaged transit motion that damps motional correlation on 0 < t < tc(q). Following the previously developed self-decorrelation theory, a microscopic model is also made for the transit random walk, which damps the structural correlation on t > tc(q). The complete model incorporates a property common to both self and distinct decorrelation: simple exponential decay following a delay period, where the delay is tc(q, the time required for the random walk to emerge from the drift. Our final result is an accurate expression for Fd(q,t) for all q through the first peak in Sd(q). The theory is calibrated and tested using molecular dynamics (MD) calculations for liquid Na at 395K; however, the theory itself does not depend on MD, and we consider other means for calibrating it.
52 - Reginald D. Smith 2020
Two estimates for the inverse binary entropy function are derived using the property of information entropy to estimate combinatorics of sequences as well as related formulas from population genetics for the effective number of alleles. The second es timate shows close correspondence to the actual value of the inverse binary entropy function and can be seen as a close approximation away from low values of binary entropy where $p$ or $1-p$ are small.
We present generalized methods for calculating lower bounds on the ground-state entropy per site, $S_0$, or equivalently, the ground-state degeneracy per site, $W=e^{S_0/k_B}$, of the antiferromagnetic Potts model. We use these methods to derive improved lower bounds on $W$ for several lattices.
In this paper, we present our image compression framework designed for CLIC 2020 competition. Our method is based on Variational AutoEncoder (VAE) architecture which is strengthened with residual structures. In short, we make three noteworthy improve ments here. First, we propose a 3-D context entropy model which can take advantage of known latent representation in current spatial locations for better entropy estimation. Second, a light-weighted residual structure is adopted for feature learning during entropy estimation. Finally, an effective training strategy is introduced for practical adaptation with different resolutions. Experiment results indicate our image compression method achieves 0.9775 MS-SSIM on CLIC validation set and 0.9809 MS-SSIM on test set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا