ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons

116   0   0.0 ( 0 )
 نشر من قبل Diego Bettoni
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be built. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-precision tests of the strong interaction. The proposed PANDA detector is a state-of-the art internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range. This report presents a summary of the physics accessible at PANDA and what performance can be expected.

قيم البحث

اقرأ أيضاً

A polarized antiproton beam at the Facility for Antiproton and Ion Research, proposed by the PAX collaboration, will open a window to new physics uniquely accessible at the new High Energy Storage Ring. Our proposal to realize an asymmetric collider, in which polarized protons with momenta of about 3.5 GeV/c collide with polarized antiprotons with momenta up to 15 GeV/c, is well--suited to perform a direct measurement of the transversity distribution function $h_1$. In this report we summarize the outcome of various working group meetings within the PAX collaboration. The overall machine setup at the HESR, proposed by the PAX collaboration, is described along with the associated PAX experimental program.
111 - J. Marton , M. Bazzi , G. Beer 2015
The strong interaction of antikaons (K-) with nucleons and nuclei in the low energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bou nd states - the prototype system being K-pp. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DA?NE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K-p atom leading to a hadronic shift and a hadronic broadening of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2). Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.
125 - J. Marton , M. Bazzi , G. Beer 2016
The strong interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound st ates. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DAFNE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound kaonic hydrogen atom leading to a hadronic shift and a hadronic broadening of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2). Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.
78 - Inti Lehmann 2009
The standard model and Quantum Chromodynamics (QCD) have undergone rigorous tests at distances much shorter than the size of a nucleon. Up to now, the predicted phenomena are reproduced rather well. However, at distances comparable to the size of a n ucleon, new experimental results keep appearing which cannot be described consistently by effective theories based on QCD. The physics of strange and charmed quarks holds the potential to connect the two energy domains, interpolating between the limiting scales of QCD. This is the regime which will be explored using the future Antiproton Annihilations at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). In this contribution some of the most relevant physics topics are detailed; and the reason why PANDA is the ideal detector to study them is given. Precision studies of hadron formation in the charmonium region will greatly advance our understanding of hadronic structure. It may reveal particles beyond the two and three-quark configuration, some of which are predicted to have exotic quantum numbers in that mass region. It will deepen the understanding of the charmonium spectrum, where unpredicted states have been found recently by the B-factories. To date the structure of the nucleon, in terms of parton distributions, has been mainly investigated using scattering experiments. Complementary information will be acquired measuring electro-magnetic final states at PANDA.
Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Anti-proton and Ion Research FAIR at Darmstadt, Germany. A copious production of Xi-hyperons at a dedicated internal target in the stor ed anti-proton beam is expected, which will enable the high-precision gamma-spectroscopy of double strange systems for the first time. In addition to the general purpose PANDA setup, the hypernuclear experiments require an active secondary target of silicon layers and absorber material as well as high purity germanium (HPGe) crystals as gamma-detectors. The design of the setup and the development of these detectors is progressing: a first HPGe crystal with a new electromechanical cooling system was prepared and the properties of a silicon strip detector as a prototype to be used in the secondary target were studied. Simultaneously to the hardware projects, detailed Monte Carlo simulations were performed to predict the yield of particle stable hypernuclei. With the help of the Monte Carlo a procedure for Lambda-Lambda-hypernuclei identification by the detection and correlation of the weak decay pions was developed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا